

Atul Ltd

Project: CRZ clearance for proposed 4.0 km long treated effluent discharge pipeline in Par estuary, Dist. Valsad.

CRZ Compliance Report for CRZ Clearance no. ENV-1097-2942-P, dated January 17, 1998. Report Period: April 2021 – September 2021

Sr	Condition	Compliance					
No. 1	The Company shall strictly adhere to all the provisions of CRZ notification of 1991 and	Complied. Details are g	given below in the table:				
	subsequent amendments.	Sr No.	Clause under CRZ notification	Compliance			
		1	Imposes the given restrictions in setting up and expansion of industries, operations or processes in CRZ.	Noted			
		2	List of prohibited activities within CRZ.	Noted			
		3	Guideline for regulation of permissible activities.	Noted			
		4	Procedure for monitoring and enforcement.	Applicable to Ministry			
		Ann. 1	Classification of costal regular zone.	Noted			
		Ann. 2	Guidelines for development of beach/resort/hotels.	NA			
		Ann. 3	List of petroleum products permitted in storage in CRZ except CRZ-1.	NA			
2	The company shall strictly adhere to the conditions stipulated by the Gujarat Pollution Control Board in their Consent order.	acts. Stipula the same is a auditors app by S.N.Pate Environment		peing complied and e. our Environmental mental audit report esearch Centre for			
3	The company shall discharge the treated effluent meeting the norms prescribed by GPCB	·					

		S Parameter No.		Limit			e period ptember 21	
					Min.	Max.	Avg.	
		1	рН	5.5-9.0	7.08	7.71	7.43	
		2	Temperature (°C)	40	30	30.7	30.27	
		3	Colour (pt. co. scale)		40	70	51.67	
		4	Suspended solids(mg/l)	100	35	53	44.00	
		5	Phenolic Compounds (mg/l)	5	0.16	1.8	0.62	
		6	Cyanides (mg/l)	0.2	ND	ND	ND	
		7	Fluorides (mg/l)	2	0.48	0.93	0.77	
		8	Sulphides (mg/l)	2	0.62	1.65	1.13	
		9	Ammonical Nitrogen (mg/l)	50	2.76	6.4	5.03	
		10	Total Chromium (mg/l)	2	ND	ND	ND	
		11	Hexavalent Chromium (mg/l)	1	ND	ND	ND	
		12	BOD (3 days at 27°C) (mg/l)	100	42	64	49	
		13	COD (mg/l)	250	186	234	206	
		GPCB. Latest Environmental audit report by S.N.Patel Institute Technology & research Centre for Environment research, Bardo Surat for year 2020-21 was submitted vide our letter date June 26, 2021. The river water quality at the discharge point is also regular being monitored by GPCB. Agencies like NIO, Polluce Laboratories Pvt. Ltd- MoEF approved agency, Envision Envi Technologies Pvt. Ltd, Kadam Environment consultancy –NABI accredited have also done the monitoring during the years. GPCB also monitor the treated effluent quality at intervals. Receives the provided as Annexure 1.						
	The company shall keep records of the quality of effluents being discharge during the tides as per the recommendations of N.I.O.	We are keeping the records of quality effluents being discharge						
4	The company shall submit the quarterly progress report of compliance of conditions.	Enviro instal	olied. have submitted progronment Department of lation work. Couple of try vide our letter Atul/Sh	of Gujar reports v	at dui were a	ring th Iready	ne pipe line submitted to	

5	The company shall bear all the cost of the agency to be appointed by the Government for overseeing/monitoring the project activities during construction/operational phases.	Noted and will be complied as and when it will come.
6	The company shall comply with all the recommendations, additional conditions and environmental safeguards prescribed in the report of NIO dated March, 1997.	Complied. Compliance to NIO recommendations are being followed. Copy of compliance report submitted to Forest and Environment Department of Gujarat was already submitted to Ministry vide our letter Atul/SHE/MoEF/Visit/3 dated April 4, 2017.
7	The company shall submit an Environmental Audit Report every year.	Complied. Latest Environmental audit report by S.N.Patel Institute of Technology & research Centre for Environment research, Bardoli, Surat for year 2020-21 was submitted vide our letter dated June 26, 2021.
8	The company shall obtain the necessary permissions from different Government department/agencies under different laws/Acts.	Complied. We have received GPCB approval for operating 4Km line vide its consent letter no. 16399 dated December 22, 1998. Copy already submitted to Ministry vide our letter Atul/SHE/MoEF/Visit/3 dated April 4, 2017.
9	Any additional conditions which may imposed from time to time.	Noted and will be complied.

Table 1: Quality of treated effluent

Sr No.	Parameter	Result	S					GPCB Limits
110.		April 21	May 21	June 21	July 21	August 21	September 21	Limito
1	рН	7.18	7.36	7.67	7.71	7.08	7.58	5.5 to 9.0
2	Temperature °C	30.2	30.4	30.2	30.7	30.1	30	40 °C
3	Colour (pt. co. scale)	40	50	40	70	60	50	
4	Suspended solids, mg/l	47	53	39	48	35	42	100
5	Phenolic compounds, mg/l	1.8	0.16	0.19	0.34	0.58	0.65	5
6	Cyanides, mg/l	ND	ND	ND	ND	ND	ND	0.2
7	Fluorides, mg/l	0.48	0.75	0.93	0.86	0.78	0.84	2
8	Sulphides, mg/l	ND	0.62	1.24	1.65	1.18	0.98	2
9	Ammonical nitrogen, mg/l	5.7	4.8	2.76	6.4	4.6	5.9	50
10	Total chromium, mg/l	ND	ND	ND	ND	ND	ND	2
11	Hexavelent chromium, mg/l	ND	ND	ND	ND	ND	ND	1
12	BOD (3 days at 27°C), mg/l	64	45	48	44	52	42	100
13	COD, mg/l	216	186	194	210	234	196	250
	Note: ND is Not D	etected.						

Annexure 1: GPCB results for treated effluent water

ANALYSIS REPORT FOR WATER / WASTE WATER SAMPLE

Sample ID:313662 - Analysis Completion:11/10/2021

Dyes and Dye- Intermediates / LAB Inward : 56391

Gujarat Pollution Control Board, Vapi C5/124, GIDC Vapi, Near Hotel Pritam, Vapi - 396 195 Tele:(0260) 2432089

TEST REPORT

Test Report No. : 56391 Date: 12/10/2021

1. Name of the Customer : Atul Limited - 23158

2. Address : 5, 6, 29, 30, 33, 34, 35, 37, 38, 80, 81, 84, 85, 91, etc., AT & P.O.ATUL, Dist. Valsad, Pin:

ATUL-396020, Taluka : Valsad, District : Valsad, GIDC : Not In Gide

3. Nature of Sample : REP-Representative/Grab, (Insp Type : COM-On Complaint)

4. Sample Collected By : T. N. Rana, SO

5. Quantity of Sample Received : 5 lit 6. Code No. of the Sample : 313662

7. Date & Time of Collection & Inwarding : 29/09/2021, (1405 to 1405) & 30/09/2021

8. Date of Start & Completion of Analysis : 30/09/2021 & 11/10/2021

9. Sampling Point : Treated w/w collected from Guard pond No.1 ~

10. Flow Details (Remarks) : ye

11. Mode of Disposal : In to Esturey zone of River Par though close pipeline

12. Ultimate Receiving Body : Estuary zone of river par

13. Temperature on Collection : 29 & pH Range on pH Strip :7 to 8 on PH strip
14. Carboys Nos for : Barcode & Color & Appearance :Light Brown

15. Water Consumption & W.W.G (KLPD) : Ind :27956.000 , Dom :938.000 & Ind :23774.000 , Dom :939.000

Sr	Parameter	Unit	Test Method	Range of Testing	Result
1	Temperature	Centigrade	Centigrade IS: 3025 (Part - 9) - 1984(Reaffirmed 2006) A		29
2	pH	pH Units	4500 H+ B APHA Standard Methods 23rd edi.2012	1 - 14 pH value As or	7.06
3	Colour	Pt.Co.Sc.	2120 B APHA Standard Methods 22nd edi. 2012	2 - to 99 Hazen & 1-50	70
4	Suspended Solids	mg/l	Gravimetric method. (2540 D APHA Standard Method	2 - 10000 mg/L	86
5	Ammonical Nitrogen	mg/l	1).Titrimetric method (4500 NH3 B & C APHA Standar	1 - 2000 mg/l.	2.80
6	Chemical Oxygen Demand	mg/l	APHA (23rd Edition)- 5220 B Open Reflux Method-20	5.0- 50000 mg/l	152
7	Oil & Grease	mg/l	Liquid - Liquid Partition Gravimetric method. (5520 B	01 - 1000 mg/l	1.6
8	Phenolic Compounds	mg/l	4 Amino Antipyrene method without Chloroform Extra	0.1 - 50 mg/l	0.30
9	Cyanide	mg/l	Titrimetric method. (4500 - CN? D APHA Standard Me	1-10 mg/l	BDL
10	Fluoride	mg/l	SPADNS method (4500-F-D APHA standard Methods	0.10-40 mg/l	0.67
11	Sulphide	mg/l	APHA (23rd Edi.)4500-s2-F -iodometric Method	1-500.0 mg/l	BDL
12	Zinc	mg/l	(3111 B APHA Standard methods 21st edi)	0.005-100mg/l	0.089
13	Copper	mg/l	3111 B APHA Standard methods 21st edi)	0.01-150 mg/l	0.098
14	Nickel	mg/l	(3111 B APHA Standard methods 21st edi)	0.02-150 mg/l	0.106
15	Lead	mg/l	(3111 B APHA Standard methods 21st edi)	0.05-150 mg/l	0.083
16	Cadmium	mg/l	(3111 B APHA Standard methods 21st edi)	0.002-100 mg/l	0.009
17	B.O.D (3 Days 27oC)	mg/l	3 - Day BOD test. (IS 3025 (Part 44) 1993 Reaffirmed	05-50000 mg/l	35

Atul Ltd

Project: Expansion of agro-chemicals (Pesticides/Herbicides) and bulk drug and pharmaceuticals manufacturing unit.

EC Compliance Report for EC F. No. J -11011/48/2003-IA II (I) dated February 20, 2004. Report period: April 2021 - September 2021

Sr No.	Condition	Compliance						
	ecific Conditions :							
i	The gaseous emissions (SO ₂ , NOx, and HCl) and particulate matters from various process units should confirm to the standards	variou CCA. Detail	lied. aseous emissic s process units s are given in b nary of Process	confirms to elow Table:	the standa			
	prescribed by the concerned authorities	Si N		Standard values as	Unit		for the p	oeriod ember 21
	from time to time.			per CCA		Min.	Max.	Avg.
		1	SO ₂	40	mg/Nm ³	13.6	36.2	26.27
		2	SO ₂ (kg/T)	2	kg/T	0.45	1.6	1.02
		3	NOx	25	mg/Nm ³	11.6	21.6	16.54
		4	HCI	20	mg/Nm³	1.3	17.1	7.50
		5	PM	150	mg/Nm ³	11.3	56.1	35.42
		6	PM with Pesticide compound	20	mg/Nm³	8.8	15.6	11.66
		Summ	nary of Flue Sta	ck results:				
		Sr No	Parameter	Standard values as	Unit	April 21	or the pe - Septen	nber 21
				per CCA		Min.	Max.	Avg.
		1	PM	100	mg/Nm³	40.4	76.4	54.76
		2	PM (New Boiler)	50	mg/Nm ³	45.7	29.4	37.44
		3	SO ₂	600	mg/Nm³	180	350	245.71
		4	NOx	600	mg/Nm³	184	384	252.42
		5	NOx (New Boiler)		mg/Nm³	218	256	229
		Detail	s of stack result	s for the cor	npliance pe	riod is giv	en in Tak	ole 1.

	Λ+ no +i 4	Committed							
	At no time, the emission levels should go beyond the	•	onitoring is	being done	e by GPCB	approved,	NABL (approved	
	stipulated standards.			ns exceeded Its given in sp				rt period.	
	In the event of failure of pollution control system(s) adopted by the unit, the respective unit should not be restarted until the control measures are rectified to achieve the desired efficiency.	Complied. No such case happened during compliance period.							
ii	Ambient air quality monitoring Station should be set up in down wind direction as well as where max. Ground level concentration of SPM anticipated in	10 Ambient direction as in consultat CPCB & Mo	well as whe ion with GP EF during th	monitoring ere max. grou CB. The sam neir visit to ou nonitoring sto	und level con e had been s ur factory.	centration of shown to a	of SPM ar	nticipated	
	consultation with the	1 66 KVA GEB substation							
	state pollution control	2 Opposite shed D							
	board.		3	West site					
		4 North site ETP 5 Near TSDF							
		6 Near main guest house 7 At wyeth colony							
			8		nchayat hall				
			9	Near main office, North site					
			10	Haria wa	Haria water tank				
iii	Fugitive emission in work zone environment, product, raw material storage areas must be regularly monitored.	Fugitive emissions in the work zone environment and raw material storage area is being regularly monitored by NABL approved third party.					t no time		
		Plant	Area	Parameter	Prescribed Limit	Values of VOCs in Milligram per NM³ for the period April 21 - September 21			
						Min.	Max.	Avg.	
		2,4 D	Reactor	Phenol	19	3.3	12.7	8.4	
			Buffer tank	Chlorine	3	1.05	1.8	1.33	
		Resorcinol	Benzene storage	Benzene	15	ND	ND	ND	

		T	1	T			.	
		tank area						
		near vent						
		N. 1	D		40.0	4.0	47.00	
		Near	Butyl	-	43.6	1.6	17.28	
		Extractio	acetate					
		n/scrubbe						
		r unit						
	Pharma	At second	Ammonia	18	3.4	10.4	6.48	
		floor work						
		area				1		
			Ammonia	18	4.1	8.4	6.62	
		recovery						
		area	F.0.1	4.0	2.52	7.4	4.00	
	Epoxy - I	At	ECH	10	2.53	7.1	4.86	
		vacuum						
		pump						
		2nd floor	TCI I	10	1.0	ГО	2.07	
		At vessel POS	ECH	10	1.9	5.9	3.97	
		1208 G.F						
	Shed H		Nitrobenzen	5	0.74	3.8	2.81	
	Siledii	floor work		J	0.74	5.0	2.01	
		area	C					
	Shed	Buffer	Chlorine	3	ND	ND	ND	
	Siled	Tank	CHIOTHE	3	IND	IND	IND	
	Results for t		nce period is o	uiven in Tak	le 2			
The company should	Complied.	ine compilar	100 portog to 5	giv eir iir i G k	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
install alkali scrubbers	•	bers for scr	ubbing of HO	I have bee	en installe	d. In fact	we have	
for scrubbing of HCl.			system i.e. co					
3			HCl in majori					
	F, Shed H e	tc.	,	, ,		•		
pH of the scrubber	Complied.							
tank should be	•		nk is monitor	ed regularl	y and log	ged. It is	a regular	
monitored regularly.	operating p	ractice.						
Liquid effluent	Complied.							
generated from the		ent generate	ed from the s	crubber is l	peing sent	t to ETP c	llong with	
scrubber should be	plant efflue	•			5		5	
sent to effluent	•							
treatment plant.								
All the process	Complied							
All the process equipment/reaction	Complied.	aust system	n has been ¡	arovided at	t ctratogic	location	and the	
vessels should be		•			_			
	vith stage scrubbing system.					ii maiupie		
central exhaust								
central exhaust								
system.	Complied							
system. Further measures	Complied. Reactors ar	re connected	d to chilled h	rine conde	nser svste	m. Breath	ner valves	
system. Further measures should be taken to	Reactors ar		d to chilled b		•	m. Breath	ner valves	
system. Further measures	Reactors ar		d to chilled b		•	m. Breath	ner valves	

	Cooling arrangement should be made for all the solvent storage tanks to minimize evaporation losses. The company should monitor VOCs from the incinerator and data submitted	Complied. Our most of solvent storage tanks are underground. All the storage tanks are in close loop which is connected to condenser to minimize evaporation losses. Complied. We send our Hazardous waste to pre co-processing units as per the valid Authorization granted by GPCB and only nonhazardous light paper waste is incinerated at our Incinerator and hence VOC generation is nullified. However,									
	regularly to SPCB and Ministry of Environment and forests.	Inc to (Incinerator stack has been regularly monitored and data submitted regularly to GPCB and MoEF through six monthly EC compliance report. Details of stack results for the compliance period is given in Table 1 .								
iv	The effluent generation should not exceed 1191 m3/day (936 m3/d of process effluent and 255 m3/d of domestic effluent).	Complied. However, since we have another EC granted in 2019 for expansion, we request to consider latest figures given in same. According to specific condition of EC F No. J 11011/108/2015-IA-II-(I) dated11.02.2019, Industrial waste water generation shall not exceed 20,51 m³/d. The average wastewater generation for the report period is 10216 m³/do only. Detail break up is given below:						II-(I) ceed 20,514			
		Wastewater April May June July August September September 21 21 21 21 21 21 21					September 21				
		٨	Month vise	282154	299056	2866	651	297320	330	909	385210
		F	Per day	9405	9647	9555	5	9591	106	74	12426
		the	e wastewo given belov	iter generd w:	ation went	beyor	nd the	e stipulat	ed star	ndarc	at at no time Is. Summary
			Wastewo generation		Stipulo value	ated	Apr	ues for th	ptemb	er 2	
			Wastewo generatio		20514	-	Min 861		ax. 3986	102	
	The effluent should be segregated at source of generation.	· ·									
	The Concentrated effluent stream should be incinerated and non-concentrated effluent after tertiary treatment should be	An cor and ser	ncentrated d product	l. We have so obtaine	installed of are solo	distilla d. Afte	tion per rec	olant whe	re the s produc	strea t, lea	n 2, 4 D is m is distilled n effluent is cineration is

discharged into the CETP.

The treated effluent should be discharged into estuary zone of river Par through 4.0 km long HDPE pipe line only after it meets the standards stipulated by the Gujarat Pollution Control Board/EPA rules.

Complied.

The discharged effluent is meeting the standards stipulated by state pollution control board limits and values of various parameters of treated effluent is given in **Table 3**.

The maximum values during the compliance period confirms that at no time the emission went beyond the stipulated standards. Summary is given below:

Sr No.	Parameter	Norms		for the 1 - Sept	period ember 21
			Min.	Max.	Avg.
1	рН	5.5-9.0	7.08	7.71	7.43
2	Temperature	40 °C	30	30.7	30.27
3	Colour (pt. co. scale)		40	70	51.67
4	Suspended solids	100 mg/l	35	53	44.00
5	Phenolic compounds	5 mg/l	0.16	1.8	0.62
6	Cyanides	0.2 mg/l	ND	ND	ND
7	Fluorides	2 mg/l	0.48	0.93	0.77
8	Sulphides	2 mg/l	0.62	1.65	1.13
9	Ammonical nitrogen	50 mg/l	2.76	6.4	5.03
10	Total chromium	2 mg/l	ND	ND	ND
11	Hexavalent chromium	1 mg/l	ND	ND	ND
12	BOD (3 days at 27°C)	100 mg/l	42	64	49
13	COD	250 mg/l	186	234	206

The domestic waste water should be disposed off through septic tank / soak pit system.

Complied.

Domestic waste water goes to septic tank and subsequently in to ETP for further treatment.

Detail of Domestic effluent generation is given in below table:

Domestic Wastewater generation m ³	April 21	May 21	June 21	July 21	August 21	September 21	Total
Month wise	4625	4856	4774	4892	4316	4724	28187
Per day	154	157	159	158	139	157	924

The maximum, minimum and average values are given below:

Domestic Wastewater	Values for the period
generation	April 21 - September 21

				Min.	Max.	Avg.		
			Domestic Wastewater	136	164	154		
			generation m³/d	130	104	154		
			_ <u>_</u>					
V	The Company should also Set up a separate online fish pond using treated effluent, to ensure that the quality of treated effluent discharged into the par estuary does not have any adverse impact on the aquatic life.	We	Complied. We have set up a separate online fish pond using treated effluent at our ETP.					
	The effluent quality at the discharge point must also be monitored periodically by an independent	The effluent quality at the ETP discharge point is regularly being monitored the Environmental auditors appointed by GPCB. GPCB also monitor the treated effluent quality at regular intervals. Read by Monitoring results of GPCB is attached as Annexure 1. The river water quality at the discharge point is regularly being monitored GPCB. Agencies like NIO, Pollucon Laboratories Pvt. Ltd- MoEF approagency, Envision Enviro Technologies Pvt. Ltd, Kadam environ consultants—both NABET accredited have also done the monitoring during years.						
	agency authorized by CPCB and report of the independent agency should be submitted to the Ministry's Regional							
vi	As reflected in the EIA/EMP report, the solid waste and ETP sludge should be incinerated and incinerator ash should be disposed off in the landfill facility within the plant premises.	ETP waste is disposed into our TSDF instead of incineration for which we have taken permission from MoEF vide letter dated May 6, 2004 and same is a approved by GPCB through our CCA. We also send our incinerable waste co-processing as per GPCB approval given through our CCA.						
	The ground water quality in and around the unit and the hazardous waste storage site should be regularly monitored and the data recorded to ensure that there is no contamination of the groundwater.	Gro the Mo	Complied. Ground water quality is being checked regularly for in and around the unit and the hazardous waste storage site. Groundwater analysis study is done by MoEF approved agency Pollucon Pvt. Ltd for year 2020 and no contamination is observed. Report has been submitted to your good office vide our letter dated June 26, 2021					

	The destruction	Carrantiant			
vii	The destructive	•			N// 000
	efficiency of the		-	erator was assessed b	
	incinerator should be			mental monitoring. R	
	assessed by an	submitted vide our	letter Atul/SHE/MoEf	F/Visit/3 dated April 4, 2	017.
	agency like CPCB and				
	a report submitted to				
	the Ministry.				
viii	The company should	Complied.			
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	comply with the	Complica.			
	provisions of coastal				
	•				
	Regulation Zone				
	Notification of 1991				
	and Coastal Zone				
	Management Plan of				
	Gujarat.				
	Further, specific	Complied.			
	conditions stipulated	•	e renort is already si	ubmitted to the Ministry	vide our letter
	by the Forest and		MoEF/Visit/3 dated A		vide edi letter
	Environment		MOLI / VISIGO dated /	дриг 4 , 2017.	
	Department,				
	Government of				
	Gujarat vide its letter				
	No. ENV-1097-2942-				
	P dated 27th				
	Januaryuary, 1998 for				
	laying of pipe line for				
	discharge of treated				
	effluents through the				
	estuary zone of the				
	River Par Zone should				
	be strictly adhered to.	Camandia			
ix	Occupational Health	-		and a sector but the sector of	
	Surveillance of the	·		workers is being done of	•
	workers should be		•	factory act. Details for r	eport period
	done on a regular	is shown in below t	able:		
	basis and records	Medical Check-Up:			
	maintained as per the	C	Empleyee	Nos durina report]
	Factories Act.	Sr	Employee	Nos. during report	
		No.	Chartt	period	
		1	Staff	1819	
		2	Operators	_	
		3	Workers		
	t .	1			4

The company should Complied. develop rainwater Company has expanded its harvesting pond capacity to 14000 KL capacity harvesting structures pond to harvest rain water. We are creating facility/ capacity to cater our to the harvest the runconsumption with rain harvested water with zero river drawls of water during off water from the the rainy days. Besides this, there are three check dams and pumping facility rooftops and by laying to harvest rain water. We are also constructing temporary sand bag dam on separate storm top of dam towards the end of monsoon to store additional free flowing rain water drains system water in river Par. for recharge of ground Company has harvest 10.59 lac KL rain water during 2021 water and to reduce the drawl from the river Par. The project authorities Complied. хi undertake may The survey was carried out to assess the impact of emission/pollutants on the health including respiratory & digestive systems of population within & vicinity survey to assess the impact of gaseous of the plant. So far no major illness have been identified. Report submitted vide emissions/pollutants our letter ref. Atul/MoEF/Reg/4 dated August 16, 2004. the health on including respiratory and digestive system population the within and vicinity of the plant and report submitted to the State Government and to this Ministry within six months. The Company should Complied. χij developed a green Proper plantation is done all around the plant boundary and also the roads to belt in a 25% of the mitigate fugitive & transport dust emission. Total Industrial Plot area: 1126078.27 sq.mt plant area as per the CPCB guidelines. Green belt area: 409030.00 sq.mt (approx. 36% of total plot area) Layout plan with green belt is shown as under:

We plant more than 50000 plants every year on road sides and other open areas in nearby villages or schools in consultation with the Gram panchayat.

xiii	As per the policy decision taken vide this Ministry's circular no. J-21011/8/98- IA II (I) dated 14th May 2002 and 23rd June, 2003, the company shall earmark a separate fund i.e. 1% of the total cost of the project (Rs. 25 Crores) for eco-development measures including community welfare measures in the project area.	We had submitted the Eco fund earmarked for eco development to GPCB with an intimation to MoEF vide our letter NRK/ECC/GPCB/3 dated May 17, 2004. Action plan related to Eco-fund also made as per process and communicated to authority wide our letter Atul/ECC/GPCB/ECO-fund/2 dated November 2, 2004. Copy of same again submitted to Ministry vide our letter Atul/SHE/MoEF/Visit/3 dated April 4, 2017.
	The amount shall be deposited within three months in a separate account to be maintained by GPCB.	Complied. We had submitted the Eco fund earmarked for eco development to GPCB with an intimation to MoEF vide our letter NRK/ECC/GPCB/3 dated May 17, 2004.
	The plans in this regard should be submitted to the SPCB as well as to the Ministry within three months of issue of this letter.	Complied. Action plan related to Eco-fund also made as per process and communicated to authority vide our letter Atul/ECC/GPCB/ECO-fund/2 dated November 2, 2004.
	After approval of the action plan by GPCB, the amount deposited will be released to the project authorities in two installments based on the progress of implementation.	Complied.
A.	General Conditions	
i	The project authorities must strictly adhere to stipulations made by GPCB.	Complied. The company adheres to the compliances and has not exceeded the stipulation. This has been certified by our Environmental auditors, an authorized agency and nominated by GPCB; through Environmental audit every year.
		Latest Environmental audit report by S.N.Patel Institute of Technology & research Centre for Environment research, Bardoli , Surat for year 2020-21 was submitted vide our letter dated June 26, 2021.
ii	At no time, the emissions should not go beyond standards.	Complied. Monthly monitoring is being done by NABL approved third party. At no time, the emissions exceeded the prescribed limits during report period.
		The maximum values during the compliance period confirms that at no time the emission level went beyond the stipulated standards. Summary of stack results given in specific condition no. i as above.

	adopted by the u the respective should immediately put o	ution stem inits, unit be ut of
	operation and sh not be restarted the desired effici- has been achieve	until ency
iii	The overall noise in and around plant area shall	the

Complied.

No such incident happened during compliance period.

Complied.

The overall noise level in and around the plant area shall be kept well within the standard by providing noise control measures including acoustic hoods silencers, enclosures etc. on all source of noise generation.

Acoustic hood, silencer and acoustic enclosures and insulation are provided at appropriate high noise area like turbine, DG set, vents etc.

The ambient noise levels should confirm to the standards prescribed under EPA Rules, 1989, viz. 75 (daytime) and 70bBA(night time)

Complied.

The ambient noise level is regularly monitored and its data are given in **Table 4 and 5**.

The maximum values during the compliance period confirms that at no time the noise emission level went beyond the stipulated standards. Summary is given below:

Noise level monitoring data (Day Time):

Sr No.	Location	Permissible Limits, dBA	Values for the period April 21-September 21		
		75	Min.	Max.	Avg.
1	66KVA substation	75	62.60	66.00	64.47
2	Opposite shed D	75	65.20	72.30	69.07
3	ETP West site	75	64.10	68.40	66.58
4	ETP North site	75	61.30	65.20	63.27
5	Near TSDF	75	63.20	69.20	66.25
6	Near Main guest house	75	61.40	65.40	63.68
7	At Wyeth Colony	75	57.80	67.30	61.43
8	Gram Panchayat Hall	75	64.20	68.30	65.98
9	Near Main Office North site	75	62.40	66.30	64.23
10	Haria Water tank	75	62.80	67.80	65.12

Noise le	evel monitor	ina data	(Niaht [*]	Time)

Sr No.	Location	Permissible Limits,	Values for April 21 –		
		dBA	Min.	Max.	Avg.
1	66KVA substation	70	51.60	55.70	53.30
2	Opposite shed D	70	50.60	54.80	52.18
3	ETP West site	70	52.50	55.30	53.67
4	ETP North site	70	50.70	58.10	52.85
5	Near TSDF	70	51.30	57.60	55.77
6	Near Main guest house	70	50.80	54.20	52.58
7	At Wyeth Colony	70	50.20	52.60	51.63
8	Gram Panchayat Hall	70	53.40	56.40	54.82
9	Near Main Office North site	70	52.40	54.30	53.27
10	Haria Water tank	70	50.20	57.30	54.08

will provide adequate funds to recurring and non-recurring to implement the conditions stipulated by the Ministry of Environment and Forest as well as the State Government

implementation

along

purposes.

iv

V

The project authorities

with

schedule for all the conditions stipulated herein. The funds so provided shall not be diverted for any other

the

Complied.

EMP measures are already implemented by 2010.

Recurring cost: A separate budget is being allocated every year to comply with all the legal requirement stipulated by SPCB, CPCB & MoEF apart from upkeep of pollution control systems and facilities. Total expenditure for the report period is given in below table.

Sr No.	Parameter	Recurring Cost (Rs. In lacs) For the report period April21-September 21
1	Air Pollution Control	2780
2	Liquid Pollution Control	2700
3	Environmental Monitoring and Management	22
4	Solid waste Disposal	87
5	Occupational health	26
6	Green belt	7
Total		2922

The project authorities must strictly comply with the rules and regulations with regard to handling and disposal hazardous wastes in accordance with the Hazardous Wastes (Management Handling) Rules, 2003.

Complied.

The company complies with the rules and regulations with regard to handling and disposal of hazardous wastes in accordance with the Hazardous and Other Wastes (Management and Transboundary Movement) Rules, 2016. We have valid authorization under our current CCA No. AWH-105110 for handling, storage and disposal of hazardous waste. Stipulation made in CCA by GPCB are being complied. This has been certified by our Environmental auditors, an authorized agency and nominated by GPCB; through Environmental audit every year.

Latest Environmental audit report by S.N.Patel Institute of Technology & research Centre for Environment research, Bardoli , Surat for year 2020-21 was submitted vide our letter dated June 26, 2021.

Authorization from the GPCB must be

Complied.

vi	obtained for collections /treatment/ storage/ disposal of hazardous waste. The stipulated conditions will be monitored by the Regional office of this Ministry at Bhopal/ GPCB.	We have valid authorization under our current CCA No. AWH-105110 for handling, storage and disposal of hazardous waste. Noted.
	A six monthly compliance report and the monitored data should be submitted to them regularly.	Complied. Six monthly compliance report and the monitored data are being submitted to the Ministry at Bhopal with copy marked to GPCB regularly.
vii	The Project Proponent shall inform the public that the project has been accorded environmental clearance by the Ministry and copies of the clearance letter are available with the SPCB/Committee and may also be seen at website of the Ministry of Environment and Forest at http://www.envfor.ni.i n.	Complied. We informed the public through advertisement and by sending our EC to local Panchayat, Zila parishad, District Industrial Centre for further actions at their end.
	This shall be advertised within seven days from the date of issue of the clearance letter at least in two local newspaper that are widely circulated in the region of which one shall be in the vernacular language of the locality concerned and a copy of the same shall be forwarded to the concerned Ministry's Regional office at Bhopal.	Complied. Advertisement was published as directed and copy of the same was submitted to Ministry.

3.0	The ministry or any competent authority may stipulate any further condition(s) on receiving reports from the project authorities. The above conditions will be monitored by the Regional Office of this Ministry located at Bhopal.	Noted.
4.0	The Ministry may revoke or suspend the clearance if implementation of any of the above conditions is not satisfactory.	Noted.
5.0	Any other conditions or alternation in the above conditions will have to be implemented by the project authorities in a time bound manner.	Noted.
6.0	The above conditions will be enforced, interalia under the provisions of the Water (Prevention and Control of Pollution) Act, 1974 the Air ((Prevention and Control of Pollution) Act, 1981 the Environment (Protection) Act, 1986, Hazardous Wastes (Management and Handling) Amendment Rules, 2003 and the Public Liability Insurance Act, 1991 along with their amendments and rules.	Noted.

Table: 1 Stack results

7				APR 2021	MAY. 2021	JUN. 2021	JULY. 2021	AUG. 2021	SEPT. 2021
Details of	Process and Flue stack					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
Sr. No.	Stack Details	Paramente r	Permissible Limits	Obtained Value	Obtained Value	Obtained Value	Obtained Value	Obtained Value	Obtained Value
Atul East	Site).			
1	furnace (Phosgene Plant)	PM	150.0 mg/Nm3	36.7	49.8	41.7	34.9	30.2	36.3
		со	_	ND	ND	ND	ND	ND	ND
2	Reactor (Phosgene plant-New)	Phosgene	0.1 ppm	ND	ND	ND	ND	ND	ND
Caustic Cl	nlorine Plant								
3	Dechlorination Plant	Cl ₂	9.0 mg/Nm3	8	6	4.4	4.6	6.2	6.2
		HCI	20.0 mg/Nm3	7.8	5.73	4.45	4.72	6.4	6.35
4	Common stack of HCI Sigri unit 1&2	Cl ₂	9.0 mg/Nm3	3.35	3.8	6.2	7.1	6.27	4.1
		HCI	20.0 mg/Nm3	3.2	3.93	6.38	7.29	6.1	4.22
FCB Paint									
5	Foul Gas Scubber	SO ₂	40.0 mg/Nm3	Not in use	Not in use	Not in use	Not in use	Not in use	Not in use
		NOx	25.0 mg/Nm3	Trust in tase	Teach in date	The article	MOLIN USE	ruot in use	NOC III USE
	cid (East Site)								
6	Sulfuric Acid Plant	SO ₂	2.0 kg/T	1.48	1.25	0.75	0.75	0.52	1.1
100		Acid Mist	50.0 mg/Nm3	15.2	22.4	19.1	19.1	9.4	24.6
7	ChloroSulfonic Acid plant reactor	Cl ₂	9.0 mg/Nm3	7.8	Not Running	5.5	4.5	7.1	3.8
		HCI	20.0 mg/Nm3	7.95		5.65	4.62	7.3	3.9
Resorcino									
8	Spray Dryer (Resorcinal Plant)	PM	150.0 mg/Nm3	21.2	10.4	18.9	15.7	19.2	24.6
9	Scubber vent (Resorcinal Plant)	SO ₂	40.0 mg/Nm3	Not Running	30.8	Not running	31.3	32.6	29.3
Incinerato									
10	Incinerator	PM	150.0 mg/Nm3	64.8	43.7	Not running	Not running	Not running	Not running
		SO ₂	40.0 mg/Nm3	17.2	20.6				
		NOx	25.0 mg/Nm3	14	19.4	1			
NI Plant									
11	Foul Gas Scubber	SO ₂	40.0 mg/Nm3	32.4	13.7	31.7	18.4	30.2	25.8
		NOx	25.0 mg/Nm3	19.6	12.4	19.8	14.9	17.1	11.6
2-4-D Pla	nt							90°	
12	Common Scrubber; 2,4D Plant	Cl ₂	9.0 mg/Nm3	7.2	7.1	3.4	6.2	5.5	5.9
		HCI	20.0 mg/Nm3	7.4	7.35	3.55	6.37	5.65	6.06
		Phenol	***	6.8	6.3	ND	ND	ND	ND
13	Dryer-1	PM with Pesticide compound	20.0 mg/Nm3	10.3	9.6	10.4	Not Running	Not Running	Not Running
14	Dryer-2	PM with Pesticide compound	20.0 mg/Nm3	Not Running	Not Running	Not Running	Not Running	Not Running	Not Running
15	Dryer-3	PM with Pesticide compound	20.0 mg/Nm3	Not Running	Not Running	Not Running	8.8	Not Running	Not Running

16	Dryer-4	PM with Pesticide compound	20.0 mg/Nm3	Not Running					
17	Dryer-5	PM with Pesticide compound	20.0 mg/Nm3	Not Running	Not Running	Not Running	10.9	12.6	15.6
NBD Plant .									
18	Spray Dryer	PM	150.0 mg/Nm3	Not in use					
19	Scrubber S-902	Phosgene	0.1 ppm	ND	ND	ND	ND	ND	ND
		HCI	20 mg/Nm3	11.9	13.8	14.9	12.1	9.4	10.1
20	Scrubber S-801/802	NOx	25.0 mg/Nm3	7.5	16.7	12.6	17.4	21.6	18.4
CP Plant									
21	MCPA	Cl ₂	9 mg/NM ³	Not Running					
		HCI	20 mg/NM ³	1					55
		SO ₂	40 mg/NM ³	1					
22	Fipronil	5O ₂	40 mg/NM ³	Not Running					
	(50)	HCI	20 mg/Nm3						
23	lmidacloprid	NH ₃	175 mg/Nm3	Not Running					
24	Pyrathroids	SO ₂	40 mg/Nm3	Not Running					
		HCI	20 mg/Nm3	1					
25	Stack at Amine Plant	NH ₃	175 mg/Nm3	145	130	115	145	102	128
MPSL Plant									
26	Phosgene Scrubbr at MPSL	Phosgene	0.1 ppm	ND	ND	ND	ND	ND	ND
27	Central Scrubber at MPSL	Phosgene	0.1 ppm	ND	ND	ND	ND	ND	ND
NICO plant			8444183832				10208	into second	30.000
28	Central scrubber at Nico Plant	Acetonytryl e, IPA	-	Not Running					
Ester Plant							3	53 6	
29	Scrubber at Ester plant for Glyphosate	Formaldehy de	10 mg/Nm3	Not Running					
30	Central Scrubber MCPA Plant	HCI	20 mg/Nm3	Not Running					
31	MPP plant scrubber	HCI	20 mg/Nm3	8.1	Not Running				
		Phosgene	0.1 ppm	ND					
Atul West S	ite								
32	Shed A05/03/44	CI ₂	9 mg/NM ³	7.75	5.35	6.2	7.3	4.6	8.1
		HCI	20 mg/NM ³	7.9	5.2	6.37	7.5	4.8	8.3
33	Shed B2/12/24 Reaction Vessel	Cl ₂	9.0 mg/Nm3	6.4	7.9	7.1	6.3	5.1	7.9
		HCI	20.0 mg/Nm3	6.2	8.12	7.3	6.47	5.2	5.2

34	Shed B18/02/24 Fan	SO ₂	40 mg/NM ³	Not Running	13.8	17.4	34.1	27.9	20.6
		Cl ₂	9 mg/NM ³		6.2	4.9	5	8.5	7.9
		HCI	20 mg/NM ³		9	5	5.1	8.73	8.1
35	Shed C5/20/15 Chlorinator	Cl ₂	9.0 mg/Nm3	7.9	6.2	5.2	3.8	7.4	7.4
		HCI	20.0 mg/Nm3	8.1	6.37	5.35	3.9	7.6	7.6
36	Shed D Niro Spray dryer No. 45	PM	150.0 mg/Nm3	Not Running	Not Running	Not Running	Not Running	Not Running	94
37	Shed D Niro Spray dryer No.50	PM	150.0 mg/Nm3	Not Running	Not Running	Not Running	Not Running	Not Running	Not Running
38	Shed E 7/12/49 Spray Dryer	PM	150.0 mg/Nm3	41.7	69.7	Not Running	Not Running	Not Running	44
39	Shed F F6/1/15 Reaction Vessel	CI ₂	9.0 mg/Nm3	Not Running	Not Running	Not Running	Not Running	Not Running	Not Running
		HCI	20.0 mg/Nm3		ORFO	140.00		- 80	1009
40	Shed G 10/8/1 (receiver)	CI ₂	9.0 mg/Nm3	Not Running	Not Running	Not Running	Not Running	Not Running	Not Running
		HCI	20.0 mg/Nm3			550000000000000000000000000000000000000	7.740.432.4431.V.124.4040		
41	Shed H 11/6/17 chlorinator	CI ₂	9.0 mg/Nm3	4.3	5.8	7.1	5.5	7.1	7.1
		HCI	20.0 mg/Nm3	12.4	14.8	14.7	10.6	11.7	11.2
42	Shed K K-13/3/4 Final of Sulfuric acid	SO ₂	2.0 kg/T	0.8	1.2	1.12	0.45	1.2	1.6
	plant	Acid Mist	50.0 mg/Nm3	2	4.6	4.65	1.6	20.6	8.2
43	Shed J15/09/25	HBr	-	ND	ND	ND	ND	ND	ND
		5O ₂	40 mg/NM ³	30.5	36.2	20.9	13.6	25.9	33.6
44	Shed J12/01/42	SO ₂	40 mg/NM ³	27.9	29.8	Not Running	Not Running	24.7	19.1
		CI ₂	9.0 mg/Nm3	7.5	5.9	1		7.9	6.4
		HC1	20.0 mg/Nm3	7.7	11.4			8.12	6.6
45	Shed J12/03/36	SO ₂	40 mg/NM ³ 20.0 mg/Nm3	Not Running	Not Running	Not Running	Not Running	Not Running	Not Running
46	Shed N Scrubber Fan N20/08/24	CI ₂	9 mg/NM ³	7.9	5.5	6.4	6.7	6.1	7.9
	39. 11.1	HC1	20 mg/NM ³	8.1	10.2	17.1	6.88	6.3	8.13
47	Shed N Scrubber Fan N20/02/41	SO ₂	40 mg/NM ³	34.5	24.7	33.2	20.6	34.2	29.7
48	Sulfer Black Plant	HaS		ND	ND	ND	1.12	ND	ND
		NH ₃	175 mg/NM ³	140	79.9	90	110	94	125
72545	-27-022 - 0240 (F) - 020 (M)	H₂S		ND	ND	ND	ND	ND	ND
49	Sulfer Dyes plant	NH ₃	175 mg/NM ³	39.8	81.6	94.8	75.1	56	106
50	Flavors & Fragrances Plant	HC1	20 mg/NM ³	Not Running	Not Running	Not Running	Not Running	Not Running	Not Running
Atul Nor	th Site								
51	N-FDH Plant Catalytic Incinerator	PM	150.0 mg/Nm3	Not Running	Not Running	Not Running	Not Running	Not Running	Not Running
		SO ₂	40.0 mg/Nm3						
		NOx	25.0 mg/Nm3						
		Formaldeh yde	10.0 mg/Nm3						
52	PHIN Plant	Phosgene	0.1 ppm	ND	ND	ND	ND	ND	ND
53	PHIN-II Plant	HC1	20 mg/NM ³	3.7	7.9	7.9	7.3	1.3	2.1
54	DDS Plant (Pharma Plant)	NH ₀	175 Mg/Nm3	130	90	75	50	44	96
55	SPIC II Plant (DCDPS)	SO ₃		15.8	ND	Not Running	24.75	17.6	11.8
56	SPIC I Plant	NH ₃	175 mg/Nm3	155	140	140	130	160	125
57	SPIC IV Plant	NH ₃	175 mg/NM ³	80	110	80	155	140	136
		SO ₂	446	11.3	ND	ND	ND	14.8	14.6

Sr. No.	Stack Details	Paramente	Permissible Limits	Obtained Value	Obtained Value	Obtained Value	Obtained Value	Obtained Value	Obtained Value
East site									
1	FBC boiler El	PM	100 mg/Nm3	40.4	Not Running	46.9	51.7	Not Running	49.7
		SO ₂	600 mg/Nm3	264		272	214		215
		NOx	600 mg/Nm3	316	1	246	201		256
2	FBC boiler E2	PM	100 mg/Nm3	Not Running	50.9	57.9	45.1	49.7	Not Running
		SO ₂	600 mg/Nm3		265	259	224	215	
		NOx	600 mg/Nm3		303	231	245	256	
3	FBC boiler E3	PM	100 mg/Nm3	68.4	76.4	Not Running	Not Running	54.7	54.7
		SO₂	600 mg/Nm3	334	239			208	208
		NOx	600 mg/Nm3	310	285			196	196
4	Hot Oil Unit	PM	150.0 mg/Nm3	11.7	34.6	39.6	23.6	31.7	40.3
	(Resorcinol Plant)	SO ₂	100 ppm	4.8	10.4	11.6	9.9	6.2	9.3
		NOx	50 ppm	17.6	29.6	24.8	33.2	40.2	30.2
5	DG set 1010 KVA (Standby)	PM	150 mg/Nm ³	23.4	28.6	34.5	50.2	37.6	44.7
		SO ₂	100 ppm	5.4	8.3	7.8	9.3	6.3	5.7
		NOx	50 ppm	39.7	30.7	33.9	49.7	29.5	32.4
West Site	<u> </u>		•	1	***				
6	FBC boiler W1	PM	100 mg/Nm3	50.2	61.7	56.7	49.6	56.2	64.7
		SO ₂	600 mg/Nm3	184	194	238	248	320	350
		NOx	600 mg/Nm3	212	201	184	320	362	384
7	Hot Oil Plant shed-B	PM	150.0 mg/Nm3	ND	ND	39.6	23.2	34.1	51.7
		SO ₂	100 ppm	ND	3.2	11.6	6.5	6.8	8.6
		NOx	50 ppm	23.8	15.6	24.8	14.8	12.4	13.4
8	Oil burner Shed B	PM	150.0 mg/Nm3	Not Running	Not Running	Not Running	Not Running	Not Running	Not Running
	(Stand By)	SO ₂	100 ppm						
		NOx	50 ppm						
9	Boiler (50 TPH 2 Nos) (New boilers) W2,W3	PM	50 mg/Nm3	31.7	34.4	45.7	29.4	38.3	39.4
Ľ	\$ 100 miles	5O ₂	600 mg/Nm3	198	180	244	290	210	324
		NOx	300 mg/Nm3	208	219	256	230	222	218
		Mercury	0.03 mg/Nm3	ND	ND	ND	ND	ND	ND
10	DG set 1500 KVA (Stand By)	PM	150.0 mg/Nm3	40.2	33.7	39.7	56.1	42.7	36.1
		SO ₂	100 ppm	6.2	9.6	6.4	11.4	5.8	4.9
i i		NOx	50 ppm	25.9	38.4	29.7	39.4	24.8	29.7
North Site									
11	Thermic fluid heater of DCO/DAP Plant	PM	150.0 mg/Nm3	25.8	35.4	41.7	11.3	30.7	49.3
		SO ₂	100 ppm	5.9	8.4	62	5.9	6.4	10.4
		NOx	50 ppm	23.6	27.6	14.9	19.1	13.2	16.5

Table 2: Fugitive Emission Monitoring details

Plant	Area	Parameter	Prescribed Limit	Results	of VOCs	in Milligra	m per NN	N ₃	
				April 21	May 21	June 21	July 21	August 21	September 21
2,4 D	Reactor	Phenol	19	10.3	12.7	12.4	6.8	3.3	4.9
	Buffer tank	Chlorine	3.0	0.89	1.05	1.2	1.8	ND	1.7
Resorcinol	Benzene storage tank area near vent	Benzene	15	ND	ND	ND	ND	ND	ND
	Near Extraction/scru bber unit	Butyl acetate	-	43.6	ND	ND	22.1	1.6	1.8
Pharma	At second floor work area	Ammonia	18	5.2	8.7	10.4	7.5	3.4	3.7
	Ammonia recovery area	Ammonia	18	5.9	7.1	6.4	8.4	4.1	7.8
Ероху - І	At vacuum pump 2nd floor	ECH	10	2.7	2.53	6.4	7.1	5.4	5
	At vessel POS 1208 G.F	ECH	10	1.9	4.4	3.6	5.9	3.7	4.3
Shed H	At second floor work area	Nitrobenzene	5	2.5	3.6	2.9	3.3	0.74	3.8
Shed J	Buffer Tank	Chlorine	3	ND	ND	ND	ND	ND	ND

Table 3: Quality of treated effluent

Sr No.	Parameter	Results	3					GPCB Limits
		April 21	May 21	June 21	July 21	August 21	September	
1	рН	7.18	7.36	7.67	7.71	7.08	7.58	5.5 to 9.0
2	Temperature °C	30.2	30.4	30.2	30.7	30.1	30	40 °C
3	Colour (pt. co. scale)	40	50	40	70	60	50	
4	Suspended solids, mg/l	47	53	39	48	35	42	100
5	Phenolic Compounds, mg/l	1.8	0.16	0.19	0.34	0.58	0.65	5
6	Cyanides, mg/l	ND	ND	ND	ND	ND	ND	0.2
7	Fluorides, mg/l	0.48	0.75	0.93	0.86	0.78	0.84	2
8	Sulphides, mg/l	ND	0.62	1.24	1.65	1.18	0.98	2
9	Ammonical Nitrogen, mg/l	5.7	4.8	2.76	6.4	4.6	5.9	50
10	Total Chromium, mg/l	ND	ND	ND	ND	ND	ND	2
11	Hexavelent Chromium, mg/l	ND	ND	ND	ND	ND	ND	1
12	BOD (3 days at 27°C), mg/l	64	45	48	44	52	42	100
13	COD, mg/l	216	186	194	210	234	196	250

Table 4: Noise level monitoring data (Day Time)

Sr	Location	Noise L	evel, dBA					Permissible
No.		April 21	May 21	June 21	July 21	August 21	September 21	Limits, dBA
1	66KVA substation	65	66	65	62.9	65.3	62.6	75
2	Opposite shed D	71.2	72.3	71.2	68.5	66	65.2	75
3	West site ETP	67.5	68.4	67.5	64.1	67.1	64.9	75
4	North site ETP	61.3	62.4	63.5	65.2	64.5	62.7	75
5	Near TSDF	65.2	66.3	65.2	63.2	69.2	68.4	75
6	Near main guest house	63.1	64.2	63.1	61.4	64.9	65.4	75
7	At wyeth colony	57.8	58.7	59.6	58.3	66.9	67.3	75
8	Gram panchayat hall	65.5	66.4	65.3	66.2	68.3	64.2	75
9	Near main office North site	62.4	63.5	64	63.7	65.5	66.3	75
10	Haria water tank	64.3	65.2	66.3	67.8	64.3	62.8	75

Table 5: Noise level monitoring data (Night Time)

Sr	Location	Noise L	evel, dBA					Permissible
No.		April 21	May 21	June 21	July 21	August 21	September 21	Limits, dBA
1	66KVA substation	53.5	54.6	55.7	51.7	52.7	51.6	70
2	Opposite shed D	50.6	51.4	52.5	54.8	53	50.8	70
3	West site ETP	53.1	54.2	55.3	52.7	54.2	52.5	70
4	North site ETP	51.4	52.5	51.8	50.7	52.6	58.1	70
5	Near TSDF	57.6	56.7	55.6	51.3	56.2	57.2	70
6	Near main guest house	52.4	53.5	52.4	54.2	50.8	52.2	70
7	At wyeth colony	51.5	52.4	51.3	50.2	51.8	52.6	70
8	Gram panchayat hall	55.6	56.4	55.1	53.7	53.4	54.7	70
9	Near main office North site	53.4	54.3	53.4	52.4	52.4	53.7	70
10	Haria water tank	55.6	56.4	57.3	53.6	50.2	51.4	70

Annexure 1: GPCB Result

ANALYSIS REPORT FOR WATER / WASTE WATER SAMPLE

Sample ID:313662 - Analysis Completion:11/10/2021

Dyes and Dye-Intermediates / LAB Inward : 56391

Gujarat Pollution Control Board, Vapi C5/124, GIDC Vapi, Near Hotel Pritam, Vapi - 396 195 Tele:(0260) 2432089

TEST REPORT

Test Report No. : 56391 Date: 12/10/2021

1. Name of the Customer : Atul Limited - 23158

2. Address : 5, 6, 29, 30, 33, 34, 35, 37, 38, 80, 81, 84, 85, 91, etc., AT & P.O.ATUL, Dist. Valsad, Pin:

ATUL-396020, Taluka : Valsad, District : Valsad, GIDC : Not In Gidc

3. Nature of Sample : REP-Representative/Grab, (Insp Type : COM-On Complaint)

4. Sample Collected By : T. N. Rana, SO

5. Quantity of Sample Received : 5 lit 6. Code No. of the Sample : 313662

7. Date & Time of Collection & Inwarding : 29/09/2021 , (1405 to 1405) & 30/09/2021

8. Date of Start & Completion of Analysis : 30/09/2021 & 11/10/2021

9. Sampling Point : Treated w/w collected from Guard pond No.1 ~

10. Flow Details (Remarks) : yes

11. Mode of Disposal : In to Esturey zone of River Par though close pipeline

12. Ultimate Receiving Body : Estuary zone of river par

13. Temperature on Collection : 29 & pH Range on pH Strip :7 to 8 on PH strip
14. Carboys Nos for : Barcode & Color & Appearance :Light Brown

15. Water Consumption & W.W.G (KLPD) : Ind :27956.000 , Dom :938.000 & Ind :23774.000 , Dom :939.000

Sr	Parameter	Unit	Test Method	Range of Testing	Result
1	Temperature	Centigrade	IS: 3025 (Part - 9) - 1984(Reaffirmed 2006)	Ambient oC - 60 oC	29
2	pH	pH Units	4500 H+ B APHA Standard Methods 23rd edi.2012	1 - 14 pH value As or	7.06
3	Colour	olour Pt.Co.Sc. 2120 B APHA Standard Methods 22nd edi. 2012		2 - to 99 Hazen & 1-50	70
4	Suspended Solids	mg/l	Gravimetric method. (2540 D APHA Standard Method	2 - 10000 mg/L	86
5	Ammonical Nitrogen	mg/l	1).Titrimetric method (4500 NH3 B & C APHA Standar	1 - 2000 mg/l.	2.80
6	Chemical Oxygen Demand	mg/l	APHA (23rd Edition)- 5220 B Open Reflux Method-20	5.0- 50000 mg/l	152
7	Oil & Grease	mg/l	Liquid - Liquid Partition Gravimetric method. (5520 B	01 – 1000 mg/l	1.6
8	Phenolic Compounds	mg/l	4 Amino Antipyrene method without Chloroform Extra	0.1 - 50 mg/l	0.30
9	Cyanide	mg/l	Titrimetric method. (4500 - CN? D APHA Standard Me	1-10 mg/l	BDL
10	Fluoride	mg/l	SPADNS method (4500-F-D APHA standard Methods	0.10-40 mg/l	0.67
11	Sulphide	mg/l	APHA (23rd Edi.)4500-s2-F -iodometric Method	1-500.0 mg/l	BDL
12	Zinc	mg/l	(3111 B APHA Standard methods 21st edi)	0.005-100mg/l	0.089
13	Copper	mg/l	3111 B APHA Standard methods 21st edi)	0.01-150 mg/l	0.098
14	Nickel	mg/l	(3111 B APHA Standard methods 21st edi)	0.02-150 mg/l	0.106
15	Lead	mg/l	(3111 B APHA Standard methods 21st edi)	0.05-150 mg/l	0.083
16	Cadmium	mg/l	(3111 B APHA Standard methods 21st edi)	0.002-100 mg/l	0.009
17	B.O.D (3 Days 27oC)	mg/l	3 - Day BOD test. (IS 3025 (Part 44) 1993 Reaffirmed	05-50000 mg/l	35

Atul Ltd

Project: Expansion of Pesticide and Synthetic Organic Chemicals manufacturing unit EC Compliance Report for EC F. No. J - 11011/85/2009 - IA II (I) dated May 13, 2009 Report Period: April 2021 - September 2021

Condition	Cor	mpliance									
oecific Conditions											
Industrial Waste water generation shall not exceed 17,283 m³/d.	Sinc late: 110	Since we have another EC granted in 2019 for expansion, we request to consider atest figures given in same. According to specific condition of EC F No. J 11011/108/2015 - IA - II - (I) dated February 11, 2019, Industrial waste water generation shall not exceed 20,514 m³/day.									
	102	0216 m³/day only which is well within the limit. Detail break up is given in below									
		Waste water generation m ³	April May June July August September 21 21 21 21						-		
		Month wise	282154	2990	56	286651	297320	330909	385210		
		Per day	9405	9647		9555	9591	10674	12426		
		Wastew	Vastewater generation went beyond the stipulated value. Summary is given below: Values for the period Value								
		Wastewater generation 20514 8615 13986 10216 m³/d									
	Industrial Waste water generation shall not exceed	Industrial Waste water generation shall not exceed 17,283 m³/d. The 102 table	Industrial Waste water generation shall not exceed 17,283 m³/d. The average waster generation shall in a variance water generation m³ Month wise Per day The maximum wastewater generation generation wastewater generat	Industrial Waste water generation shall not exceed 17,283 m³/d. Since we have another Elatest figures given in 11011/108/2015 - IA - generation shall not exceed The average wastewater 10216 m³/day only which table: Waste water April generation 21 m³ Month wise Per day 9405 The maximum values du wastewater generation wastewat	Industrial Waste water generation shall not exceed 17,283 m³/d. Since we have another EC gran latest figures given in same. 11011/108/2015 - IA - II - (I) generation shall not exceed 20,5 The average wastewater general 10216 m³/day only which is we table: Waste water April May generation 21 21 m³ Month wise 282154 2990 Per day 9405 9647 The maximum values during the wastewater generation went bey Wastewater generation Wastewater generation Wastewater generation	Industrial Waste water generation shall not exceed 17,283 m³/d. Complied. Since we have another EC granted latest figures given in same. Acc 11011/108/2015 - IA - II - (I) date generation shall not exceed 20,514 m The average wastewater generation 10216 m³/day only which is well witable: Waste water April May generation 21 21 m³ Month wise 282154 299056 Per day 9405 9647 The maximum values during the convastewater generation went beyond Wastewater generation Sti val	Industrial Waste water generation shall not exceed 17,283 m³/d. Since we have another EC granted in 2019 for latest figures given in same. According to 11011/108/2015 - IA - II - (I) dated February generation shall not exceed 20,514 m³/day. The average wastewater generation for the reputable: Waste water April May June generation 21 21 21 21 21 21 21 21 21 21 21 21 21	Industrial Waste water generation shall not exceed 17,283 m³/d. Since we have another EC granted in 2019 for expansional latest figures given in same. According to specific 11011/108/2015 - IA - II - (I) dated February 11, 20 generation shall not exceed 20,514 m³/day. The average wastewater generation for the report period 10216 m³/day only which is well within the limit. Detail table: Waste water April May June July 21 21 21 21 21 21 21 21 21 21 21 21 21	Industrial Waste water generation shall not exceed 17,283 m³/d. Complied. Since we have another EC granted in 2019 for expansion, we reclatest figures given in same. According to specific condition 11011/108/2015 - IA - II - (I) dated February 11, 2019, Industrigeneration shall not exceed 20,514 m³/day. The average wastewater generation for the report period is 10216 m³/day only which is well within the limit. Detail break up it table: Waste water April May June July August 21 21 21 21 21 21 21 21 21 21 21 21 21	Industrial Waste water generation shall not exceed 17,283 m³/d. Complied. Since we have another EC granted in 2019 for expansion, we request to conlatest figures given in same. According to specific condition of EC F M 11011/108/2015 - IA - II - (I) dated February 11, 2019, Industrial waste vigeneration shall not exceed 20,514 m³/day. The average wastewater generation for the report period is 10216 m³/day only which is well within the limit. Detail break up is given in bitable: Waste water April May June July August September generation 21 21 21 21 21 21 21 21 21 21 21 21 21	

23 m³/d High COD effluent shall be incinerated.

Complied.

Since we have another EC granted in 2019 for expansion, we request to consider latest figures given in same. According to specific condition No. viii) of EC F No. J 11011/108/2015 - IA - II - (I) dated February 11, 2019. "Industrial/trade effluent shall be segregated into High COD/TDS and Low COD/TDS effluent streams. High TDS/COD shall be passed through stripper followed by MEE and ATFD (agitated thin film drier). Low TDS effluent stream shall Be treated in ETP/RO to meet the prescribed standards."

Accordingly the High TDS and High COD waste water quantity are now 291 m³/d and 81 m³/d respectively.

We have been segregating high COD streams (COD >50000 ppm) and same is being taken for recovery to get economic benefit. Rest lean effluent of COD <2000 ppm is finally sent to ETP for treatment.

All the high COD streams are being diverted to recovery system rather than incineration. Streams containing Ammonia, Methanol, Copper, Solvents, Phenolics, etc. are taken for the recovery of the same and reused. Hence, there is **no High COD Waste water stream remaining** and therefore no incineration was done during this period.

97 m³/d High TDS effluent shall be evaporated through MEE.

Complied.

As stated above, the High TDS effluent quantity is now 291 m³/d. The average 130.5 m³/d high TDS waste water was evaporated in MEE during report period. Detail break up is given in below table:

Break up	Break up of effluent KI/Day											
Sr No.	Month	High TDS/COD	Low TDS/COD									
1	April 21	133	9405									
2	May 21	113	9647									
3	June 21	149	9555									
4	July 21	132	9591									
5	August 21	127	10674									
6	September 21	129	12426									

Total quantity of 17283 m³/d shall be treated at company's own effluent treatment plant.

Complied.

According to specific condition of EC F No. J 11011/108/2015 - IA - II - (I) dated February 11, 2019 Industrial Waste water generation shall not exceed 20,514 m³/d. The average 10216 m³/day wastewater was treated in the company's own effluent treatment plant during the reporting period.

Final Discharge of Treated effluent is being discharge into river par through 4 km line constructed by M/s Atul.

Complied.

Final discharged effluent meeting with standards stipulated by state pollution control board is being discharged into river Par through 4 km line.

Ammonia bearing effluent shall be subject to ammonia recovery before mixing with normal effluent stream.

Complied.

Ammonia bearing effluent streams generated from 4,4 DDS production is recovered by stripping in series of packed column. The ammonia contained water from the stripper is condensed in condenser and recovered ammonia is being recycled back in production of 4,4 DDS. Details are given in below table:

A mama a miles	April 21	May 21	June 21	July 21	August 21	September 21	Total
(MT)	327	335	315	536	470	485	2468

Phenol will be recovered from phenol containing effluent.

Complied.

20 Kg phenol is recovered from effluent per one MT of 2,4 D production. A distillation column has been installed for phenol recovery. Resin tower are installed to recover phenol. Data is given in below table:

	April 21	May 21	June 21	July 21	August 21	September 21	Total
DCP crude distilled	1661	1594	1580	1300	1915	1683	9734
2,4DCP recovered	1444	1394	1386	1140	1680	1476	8520
2,6DCP recovered	120	110	105	87	127	109	658
OCP/ Residue	97	90	89	73	108	97	554

The treated effluent shall confirm the discharge norms.

Complied.

The treated effluent is meeting with standards stipulated by state pollution control board's discharge norms and values of various parameters of treated effluent is given in **Table 1**.

The maximum values during the compliance period confirms that at no time the emission went beyond the stipulated standards. Summary is given below:

Sr No.	Parameter	Norms	Values for the period April 21 – September 2		
			Min.	Max.	Avg.
1	рН	5.5 - 9.0	7.08	7.71	7.43
2	Temperature	40°C	30	30.7	30.27
3	Colour (pt. co. scale)		40	70	51.67
4	Suspended solids	100 mg/l	35	53	44.00
5	Phenolic Compounds	5 mg/l	0.16	1.8	0.62
6	Cyanides	0.2 mg/l	0	0	ND
7	Fluorides	2 mg/l	0.48	0.93	0.77
8	Sulphides	2 mg/l	0.62	1.65	1.13

			9 <i>A</i>	mmoni	cal Ni	troç	gen	50 m	g/l	2.76	6.4	5.03	
			10 T	otal Ch	romiu	m		2 mg	/	0	0	ND	
			11 H	lexavale	ent Ch	ror	mium	1 mg	/	0	0	ND	
		12 BOD (3 days a			ut 27°C) 100 mg/l		42	64	49				
			13 COD					250 ı	ng/l	186	234	206	
	The domestic effluent shall be disposed off through septic tank / soak pit.	Per do	tic efflue t genera estic ewater ration n wise	April 21 4625 154 minimu Wastew	May 21 485 157 m and	n b	June 21 4774 159 Verage	July 21 44 1 1 values	y 	Augus 21 4316 139 given bel d April 21	t Se 2 2 4 1 1 ow:	Detail of eptember 1 724 57 otember 2	Total 28187 924
ii	The process emissions (SO ₂ , NH ₃ , Cl ₂ , and HCl, shall be scrubbed with Scrubbers.	All the SO ₂ , NH ₃ , Cl ₂ , and HCl vents are being routed through adequate and properly designed scrubbing system. Furthermore, most of the process and flue gas stacks have been monitored through online monitoring system and also connected to GPCB											
with Scrubbers. The emission shall be dispersed through stack of adequate height as per CPCB standard. Complied. The emission is dispersed through adequate height of stacks as per CPCB as given below: For Incinerator: Minimum stack height shall be 30 meters above ground For Boilers: Stack Height H=14(Q) ^{0.3} Details of stack results along with its height data is given in Tab emissions from process units are monitored regularly on monthly basis During the report period no case varies from standard.						ground. n Table 2							
	The gaseous emission from the DG sets shall be dispersed through stack of adequate height as per CPCB standards.	The gaseous emission from the DG sets is being dispersed through stack of adequath height as per CPCB standards given below: The minimum height of stack is provided using the following formula (ref. CPCB): $H = h + 0.2x\sqrt{KVA}$									·		
		Howev	er, DG s	ets are l	being	US	ed only	during	g eme	ergency s	tartup		4 of 33

Acoustic
enclosures shall
be provided to the
DG set to control
the noise
pollution.

iii The company

Complied.

All DG sets are having inbuilt acoustic enclosures to control the noise pollution and meeting the prescribed norms.

The company shall upload the status of compliance of stipulated environmental clearance conditions including results of monitored data on its web site.

Complied.

The status of compliance of stipulated environmental clearance conditions including results of monitored data is posted on our web site www.atul.co.in

Status of compliance of stipulated environmental clearance conditions to be sent to Regional office of MoEF, respective the Zonal office of CPCB and the pollution state control board.

Complied.

Compliance status report to the stipulated environmental clearance conditions are regularly submitted to the regional office of MoEF, zonal office of CPCB and state pollution control board.

The criteria pollutant levels SPM, namely; RSPM, SO2, NOx (ambient levels as well as Stack emissions) or critical sectorial parameters like VOC, indicated for the project shall be monitored and displayed at a convenient location near the main gate company in the public domain.

Complied.

The critical pollutants parameters namely; SPM, RSPM, SO₂, NOx are monitored regularly on monthly basis and displayed at board at the company entrance.

Photograph of main gate digital display board for ambient air quality:

Details of stack results, ambient air monitoring and VOC measured in fugitive emission is given in **Table 2, 3 and 4** respectively.

The maximum values during the compliance period confirms that at no time the emission level went beyond the stipulated standards. Parameter wise summary is given below:

Summary of Process Stack results:

No.	Parameter	Standard	Unit	Values for the period		
		values as		April 21 – September 21		
		per CCA		Min.	Max.	Avg.
1	SO ₂	40	mg/Nm³	13.6	36.2	26.27
2	SO ₂ (kg/T)	2	kg/T	0.45	1.6	1.02
3	NOx	25	mg/Nm³	11.6	21.6	16.54
4	HCI	20	mg/Nm³	1.3	17.1	7.50
5	PM	150	mg/Nm³	11.3	56.1	35.42
6	PM with	20	mg/Nm³	8.8	15.6	11.66
	Pesticide					
	compound					

Summary of Flue Stack results:

No.	Parameter	Standard	ndard Unit Values for the period				
		values as		April 21 – September 21		21	
		per CCA		Min.	Max.	Avg.	
1	PM	100	mg/Nm³	40.4	76.4	54.76	
2	PM (New	50	mg/Nm³	45.7	29.4	37.44	
	Boiler)						
3	SO ₂	600	mg/Nm³	180	350	245.71	
4	NOx	600	mg/Nm³	184	384	252.42	
5	NOx	300	mg/Nm³	218	256	229	
	(New Boiler)						

Summary of Ambient Air Quality results:

Station	Parameter	Limit micro	Values for th April 21 – Se		
		- gm/N M³	Min.	Max.	Avg.
66 KV	PM 2.5	60	20	24	22.2
	PM10	100	35	47	43.7
	SO ₂	80	10.9	14.6	13.0
	NO ₂	80	9.6	14.3	12.0
	Ammonia	400	ND	ND	ND
	HCI	200	6.7	8	7.2
Opposite	PM 2.5	60	25.6	33.5	30.9
Shed D	PM10	100	44.6	51.6	49.5
	SO ₂	80	11.6	18.5	15.0

1	NO	80	10.1	15	12.9
	NO ₂	400	10.1 ND	ND	12.9 ND
	Ammonia HCl	200	ND	ND	ND
West site ETP	PM 2.5	60	20	28	24.3
VVESUSILE LTI	PM10	100	34	49	43.3
	SO ₂	80	11.7	13.7	13.0
		80	10.3		12.1
	NO ₂	400	10.3 ND	14.2 ND	ND
	Ammonia				
No de de ETD	HCI	200	ND	ND	ND
North site ETP	PM 2.5	60	19	29	23.2
	PM10	100	40	46	43.2
	SO ₂	80	9.5	14.1	11.8
	NO ₂	80	10.2	13.5	11.8
	Ammonia	400	5.9	12	8.8
	HCI	200	ND	ND	ND
TSDF	PM 2.5	60	21	28	24.2
	PM10	100	41	49	45.3
	SO ₂	80	10.7	13.8	12.1
	NO ₂	80	10.4	13.8	12.2
	Ammonia	400	4.7	7	6.0
	HCI	200	ND	ND	ND
Main Guest	PM 2.5	60	19.7	26.6	23.9
House	PM10	100	41.8	48.3	45.3
	SO ₂	80	11	15.2	13.1
	NO ₂	80	10.3	22.4	17.0
	Ammonia	400	ND	ND	ND
	HCI	200	ND	ND	ND
Wyeth Colony	PM 2.5	60	23	29	26.0
	PM10	100	42	52	47.8
	SO ₂	80	11.1	13.6	12.2
	NO ₂	80	10.7	13.8	12.0
	Ammonia	400	ND	ND	ND
	HCI	200	ND	ND	ND
Gram	PM 2.5	60	30.4	35.4	32.0
panchayat	PM10	100	41.9	51.7	48.5
hall	SO ₂	80	12.4	16.2	14.5
TIGII					20.2
	NO ₂	80	14.8	22.9	
	Ammonia	400	ND	ND	ND
	HCI	200	ND	ND	ND
Main office,	PM 2.5	60	33.6	39.5	37.1
North site	PM10	100	46.8	54.3	50.7
	SO ₂	80	10.7	13.4	11.9
	NO ₂	80	12.4	22.4	16.6
	Ammonia	400	ND	ND	ND
	HCI	200	ND	ND	ND
Haria water	PM 2.5	60	26.5	35.5	30.0
Haria water					

SO ₂	80	10.8	16.8	13.1
NO ₂	80	10.5	17.4	13.8
Ammonia	400	ND	ND	ND
HCI	200	ND	ND	ND

Summary of VOC results :

Plant	Area	Parameter	Prescribed Limit	Values of VOCs in Milligram per NM³ for the period April 21 – September 21 Min. Max. Avg.			
2,4 D	Reactor	Phenol	19	3.3	12.7	8.4	
	Buffer tank	Chlorine	3	1.05	1.8	1.33	
Resorcinol	Benzene storage tank area near vent	Benzene	15	ND	ND	ND	
	Near Extraction /scrubber unit	Butyl acetate	-	43.6	1.6	17.28	
Pharma	At second floor work area	Ammonia	18	3.4	10.4	6.48	
	Ammonia recovery area	Ammonia	18	4.1	8.4	6.62	
Epoxy - I	At vacuum pump 2nd floor	ECH	10	2.53	7.1	4.86	
	At vessel POS 1208 G.F	ECH	10	1.9	5.9	3.97	
Shed H	At second floor work area	Nitrobenze ne	5	0.74	3.8	2.81	
Shed J	Buffer Tank	Chlorine	3	ND	ND	ND	

The Complied. company We have obtained authorization for our own TSDF through GPCB notification no. shall obtain GPCB/HAZ/GEN - 55/9647 dated March 13, 2000 and NOC no. CTE - 65621 dated Authorization for November 19, 2004. Also we have valid authorization under our current CCA No. Collection; Storage AWH - 105110 for handling, storage and disposal of hazardous waste. and Disposal of Hazardous waste under hazardous waste management (Handling and boundary trans movement rule -2008) for management of hazardous waste and prior permission from GPCB shall be obtained for disposal of solid waste in the TSDF. The Compiled. concerned company shall A well designed Fire hydrant system is adequate and as per standards. undertake Fire hydrant Network details: measures for the • Four full - fledged fire hydrant system in the company Water Storage Capacity firefighting facility - 50 million Liters case Total length of hydrant line – 15 km in of emergency. Fire Fighting Equipment o DCP1350 0 CO_2 776 Foam: 05Trolly Fire Tenders o One fire tender having 1800 Lit water capacity o Second multipurpose fire tenders having 5000 Lit water &500Foam o Third Multipurpose tender having facility of DCP - 500 Kg, Foam - 500 lit and Water - 4500 Lit. SCBA sets – 35nos. • Emergency alarm system – 532 nos. points spread across the company. • Fire station manned round the clock with Siren and Annunciation System. • Regular Testing on every Monday. • Smoke detectors in the office and labs. Auto water deluging system at critical reactors. Auto water sprinkler system at tank farms.

We are complying with all the requirement of MSIHC rule 1989 as amended in

Octoberober, 1994 and January, 2000 and having proper storage and handling

system, Onsite emergency plan, Licenses, reporting, etc.

vi

The

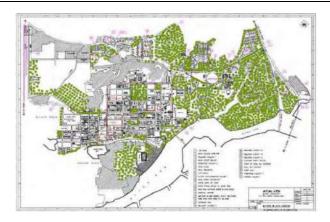
strictly

authorities

with the rules and

Complied.

project


comply

shall

	guidelines under manufacturing, storage and import of hazardous chemicals rule 1989 as amended in Octoberober, 1994 and January, 2000.	The company complies with all stipulated norms of act made in CCA by GPCB are being complied. Latest Environmental audit report by S.N.Patel Institute of Technology & research Centre for Environment research, Bardoli, Surat for year 2020-21 was submitted vide our letter dated June 26, 2021.
	All Transportation of Hazardous chemicals shall be as per the MVA, 1989.	Complied. Transportation of Hazardous chemicals are being done as per the MVA rule 1989. TREM (Transport Emergency) card and MSDS of chemicals are provided to transporter.
vii	The company shall undertake waste minimization measures: Metering and control of quantities of active ingredients to minimize waste.	Complied. All the liquid ingredients are being charged through measure vessels and/or flow meters to control on quantity as per the stoichiometry. All the solid ingredients are charged after proper weighment only. All these meters and weighing machines are calibrated and records are maintained.
	Reuse of by products from the process as raw materials or as raw material substitutes in other processes.	Complied. Sodium sulfate, sodium thio sulphate, brine, MEE salt, sodium hypochlorite, copper hydroxide, spent acid, etc. are few by - products from the process which are being sold for using the same either as raw material or as substitute to raw materials. Also, fly ash and gypsum are being used as raw material for brick manufacturing. Sodium hypochlorite, sodium hydro sulfide, etc. are being used as raw material in other processes.
	Use of automated filling to minimize spillage.	Complied. Automated filling system for our agro products, polymers, resorcinol, and dyes for small and bulk packing is provided to minimize spillage.
	Use of 'close feed' system into batch system.	Complied. Chemicals and solvents are handled in close handling system through pipe lines only.
	Venting equipment through vapor recovery system.	Complied. All the reactors are equipped with vents/stacks, which are connected to either vapor recovery system consisting of condensers, ejector/vacuum pumps and/or scrubbers. Genoscorb technology for solvent vapor recovery is also installed and working perfectly.

	Use of high	Complied.
	pressure hoses	Many equipment like reactors, spray dryers, condenser wherever necessary are being
	for equipment	cleaned with high pressure sprayer / jet to reduce waste water generation.
	cleaning to	
	reduce	
	wastewater	
	generation.	
viii	Fugitive	Complied.
	emissions in the	Fugitive emissions in the work zone environment and raw material storage area is
	work zone	being regularly monitored by NABL approved third party.
	environment,	Data for the reporting period is given in Table 4 . Besides this online monitors in work
	product, raw	area for parameters like Chlorine, HCl and Phosgene are also installed.
	material storage	
	area shall be	The maximum values during the compliance period confirms that at no time the
	regularly	emission level went beyond the stipulated standards.
	monitored. The	
	emission shall	Summary is given in specific condition iii.
	conform to the	
	limits imposed by	
	l.	
ix	The project	•
	authority shall	All the VOCs/solvent recovery systems are attached with chilled brine solution in
	provide chilled	secondary condenser for condensation of VOCs.
	brine solution in	
	secondary	
	condenser for	
	condensation of	
	the VOCs.	
	The project	Complied.
	authority shall	On an average solvent recovery is 96%.
	ensure that	
	solvent recovery	
	shall not be less	
	than 95%	
	The VOC	Complied.
	monitoring shall	We are monitoring VOC as well as other chemicals in work area as per Factories Act
	be carried in the	and records are being maintained in Form No. 37.
	solvent storage	
	area and data	VOC monitoring in solvent storage area is being done and data are submitted through
	submitted to the	EC compliance report.
	Ministry.	
	•	Data for the report period is given in Table 4.
X	Solvent	Complied.
	management	All the reactors handling solvent are connected/attached with chilled brine condenser
	shall be as	for solvent recovery.
	follows:	
	Reactor shall be	
	connected to	
	chilled brine	
	condenser	
1	CONTROLISE	

	system.	
	Reactor and solvent handling pump shall have mechanical seals to prevent leakages.	Complied. All the reactors and pumps handling solvent are equipped with mechanical seals to prevent leakages.
	The condensers shall be provided with sufficient HTA and residence time so as to achieve more than 95%	Complied. The condensers provided are properly designed with respect to HTA and Residence time to achieve more than 95 % recovery. As mentioned above, average 96 % solvent recovery is being achieved.
	Solvents shall be stored in a separate space specified with all safety measures.	Complied. Solvents are stored in tank farms in separate tanks with proper earthing, flame arresters, lightening arresters, fencing, Fire hydrant system, Fire extinguishers, flame proof equipment, etc. safety measures.
	Proper earthing shall be provided in all the electrical equipment wherever solvent handling is done.	Complied. Double earthing is provided and regular checking and testing of the same is being done and recorded.
	Entire plant shall be flame proof.	Complied. Plants are equipped with Jumpers, flame proof electrical fittings and proper earthing as per the Hazardous area classification of PESO.
	The solvent storage tanks shall be provided with breather valve to prevent loses.	Complied. Breather valves have been provided to all the solvent storage tanks to minimize the loses.
xi	Hazardous chemicals shall be stored in tanks in tank farms, drums, carboys etc.	Complied. Hazardous chemicals are being stored in tanks, drums and carboys considering the storage quantity and chemical stored.
	Company shall develop an area of 33% green belt and selection of plant species shall be as per the guideline of CPCB.	Complied.

Proper plantation is done all around the plant boundary and also the roads to mitigate fugitive & transport dust emission.

Total Industrial Plot area: 1126078.27 sq.mt

Green belt area: 409030.00 sq.mt (approx. 36% of total plot area)

Layout plan with green belt is shown as under:

We plant more than 50000 plants every year on road sides and other open areas in nearby villages or schools in consultation with the Gram panchayat.

χij The company shall harvest surface as well as rain water from the roof tops of the building and storm water drain to recharge the ground water and use the same water for the various activities of the project to

Complied.

Company has expanded its harvesting pond capacity to 14000 KL capacity pond to harvest rain water

We are creating facility/ capacity to cater our consumption with rain harvested water with zero river drawls of water during the rainy days. Besides this, there are three check dams and pumping facility to harvest rain water.

We also construct temporary sand bag dam on top of dam towards the end of monsoon to store additional free flowing rain water in river Par.

In addition to above, surface runoff water and roof top water is used to recharge bore wells.

Company has harvest 10.59 lac KL rain water during 2021.

xiii Occupational health surveillance of the workers shall be done on a regular basis and records maintained as per the Factories Act.

conserve water.

Complied.

fresh

Occupational health surveillance of the workers is being done on regular basis and record maintained as per the factory act. Details for the report period is shown in below table:

Medical Check - Up:

<u>op.</u>						
Sr No.	Employee	Nos during report period				
1	Staff	1819				
2	Operators					
3	Workers					

B. General Conditions:

İ	The project authorities shall strictly adhere to the stipulations made by the State Pollution Control Board.	Complied. The company adheres to the compliances and has not exceeded the stipulation. This has been certified by our Environmental auditors, an authorized agency and nominated by GPCB; through Environmental audit every year. Latest Environmental audit report by S.N.Patel Institute of Technology & research Centre for Environment research, Bardoli, Surat for year 2020-21 was submitted vide our letter dated June 26, 2021.
ii	No further expansion or modification in the plant shall be carried out without prior approval of the Ministry of Environment and Forests.	Complied. Any expansion will be done only after getting EC.
	In case of deviations or alterations in the project proposal from those submitted to this Ministry for clearance, a fresh reference shall be made to the Ministry to assess the adequacy of conditions imposed and to add additional environmental protection measures required, if any.	
iii	At no time, the emissions shall exceed the prescribed limits.	Complied. Monthly monitoring is being done by NABL approved third party. At no time, the emissions exceeded the prescribed limits during report period. Summary of stack results given in specific condition no. iii.

	In the event of	Complied.
	failure of any	No such case happened during compliance period. Whenever such incident of failure
	pollution control	of pollution control system happened, we will stop the operation and rectify the
	system adopted	problem and then only restart.
	by the units, the	
	unit shall be	
	immediately put	
	out of operation	
	and shall not be	
	restarted until the	
	desired efficiency	
	has been	
	achieved.	
iv	The Gaseous	Complied.
	emission (NOx,	The gaseous emissions (SO ₂ , NOx, and HCl) and particulate matters from various
	HCl, SO2 and	process units confirms to the standards prescribed by GPCB through CCA.
	SPM) and	Details of stack results for the compliance period is given in Table 2 .
	Particulate matter	
	along with RSPM	
	levels from	
	various process	
	units shall	
	conform to the	
	standards	
	prescribed by the	
	concerned	
	authorities from	
	time to time.	
	At no time, the	Complied.
	emission levels	We will ensure that at no time emission will go beyond the standards. The maximum
	shall go beyond	values during the compliance period confirms that at no time the emission level went
	the stipulated	beyond the stipulated standards.
	standards.	Summary of stack results given in specific condition no. ii.
	In the event of	· ·
	failure of pollution	No such case happened during compliance period. Stack monitoring for SO ₂ , NOx and
	control system(s)	SPM has been carried out and details given in Table 2 . Whenever such incident of
	adopted by the	failure of pollution control system happened, we will stop the operation and rectify the
	unit, the	problem and then only restart.
	respective unit	
	shall not be	
	restricted until the	
	control measures	
	are rectified to	
	achieve the	
	desired efficiency.	
	Stack monitoring	
	for SO ₂ , NOx and	
	SPM shall be	
1	carried.	

The Location of ambient air quality monitoring stations shall be decided consultation with pollution state control Board and it shall be ensured that at least one station is installed in the up wind downwind and direction as well as where maximum ground level concentration are anticipated.

Complied.

The Location of ambient air quality monitoring stations had been decided in consultation with GPCB so that at least one station is installed in the up wind and downwind direction as well as where maximum ground level concentration are anticipated. The same had been shown to authority like SPCB, CPCB & MoEF during their visit to our factory.

List of our ambient air monitoring station is given below:

No.	Location	
1	66 KVA GEB substation	
2	Opposite shed D	
3	West site ETP	
4	North site ETP	
5	Near TSDF	
6	Near main guest house	
7	At wyeth colony	
8	Gram panchayat hall	
9	Near main office, North site	
10	Haria water tank	

Details of ambient air quality results is given in Table 3.

vi Dedicated Scrubbers and stacks of appropriate height as per the central pollution control board quideline shall be provided to control the emission from

Complied.

Dedicated scrubbers with stacks of appropriate height (as per the central pollution control board guideline) have been provided to control the emission from various vents. Details of stack results along with its height data is given in **Table 2**.

The scrubber water shall be sent to ETP for further treatment or sell to actual end users.

various vents.

Complied.

The scrubber water is being sent to ETP for further treatment.

vii The overall noise level in and around the plant area shall be kept well within the standard by providing noise control measures including acoustic hoods silencers, enclosures etc. on all source of noise generation.

Complied.

In built acoustic enclosure, silencer and insulation are provided on all source of noise generation to keep over all noise level within the stipulated standards like turbine, DG set, etc.

The ambient noise level shall confirm to the standards prescribed under Environment(Protection) Act - 1986 Rules,1989 viz 75 dBA (day time) and 70 dBA (night time)

Complied.

The ambient noise level confirm to the standard prescribed under EPA. The same is being regularly monitored and its details are given in **Table 5 and 6**.

The maximum values during the compliance period confirms that at no time the noise emission level went beyond the stipulated standards. Summary is given below:

Noise level monitoring data (Day Time):

Sr No.	Location	Permissible Limits, dBA	Values for the period April 21-September 21		
		75	Min.	Max.	Avg.
1	66KVA substation	75	62.60	66.00	64.47
2	Opposite shed D	75	65.20	72.30	69.07
3	ETP West site	75	64.10	68.40	66.58
4	ETP North site	75	61.30	65.20	63.27
5	Near TSDF	75	63.20	69.20	66.25
6	Near Main guest house	75	61.40	65.40	63.68
7	At Wyeth Colony	75	57.80	67.30	61.43
8	Gram Panchayat Hall	75	64.20	68.30	65.98
9	Near Main Office North site	75	62.40	66.30	64.23
10	Haria Water tank	75	62.80	67.80	65.12

Noise level monitoring data (Night Time):

Sr No.	Location Permissible Values for the perior Limits, April 21 – September				
		dBA	Min.	Max.	Avg.
1	66KVA substation	70	51.60	55.70	53.30
2	Opposite shed D	70	50.60	54.80	52.18
3	ETP West site	70	52.50	55.30	53.67
4	ETP North site	70	50.70	58.10	52.85
5	Near TSDF	70	51.30	57.60	55.77
6	Near Main guest house	70	50.80	54.20	52.58

		7	At Wyeth Colony	70	50.20	52.60	51.63	
		8	Gram Panchayat Hall	70	53.40	56.40	54.82	
		9	Near Main Office North	70	52.40	54.30	53.27	
		9	site	70	52.40	54.50	55.27	
		10	Haria Water tank	70	50.20	57.30	54.08	
				1	•		•	•
viii Training shall be imparted to all company is imparting training regular intervals on safety precautions and hazards are aspects of chemicals handling. Pre - employment Complied.				nealth aspe	ects of che	emicals nrough (handling. S	Safety rds at
	and routine periodical medical examination for all employees shall be undertaken on regular basis.	regulo Summ	nr basis. Hary of medical checkup given		·			311C 011
ix	Usage of PPE's by employee/ workers shall be ensured.	Complied. Company have PPE policy in place and is strictly followed. Company is providing adequate PPEs to all the employees.						
×	The project proponent shall also comply with all the environmental protection measures and safeguards proposed in project report submitted to the ministry.	Company has complied with all the environmental protection measures a safeguards proposed in the report apart from the recommendations made their in.						
All the recommendation made in respect of environmental management and risk mitigation measures relating to the project shall be implemented.		mention referre	ToR didn't suggest for EIA oned. However, recommendated ed project are complied and conber 19, 2020	ions made i	in respect o	f adequ	acy report f	or the

xi	The company will undertake all relevant measures for improving the socio economic condition for the surrounding area, CSR activities will be undertaken by involving local villages and administration:	Complied. Company is doing CSR activities for up gradation of surrounding area and well fare of nearby localities. List of CSR activities is given in Table 7.
xii	The company shall undertake eco developmental measures including community welfare measures in the project area for the overall improvement of the environment.	Complied as mentioned in xi above.
xiii	A Separate environmental management cell equipped with full flagged laboratory facility shall be set up to carry out the environmental management and monitoring function.	

The xiv project authorities shall earmark adequate funds to implement the conditions stipulated by the Ministry Environment and Forest as well as the State Government along with the implementation schedule for all the conditions stipulated herein. The funds provided shall not be diverted for other any purposes.

Complied.

EMP measures are implemented by 2010.

Recurring cost: A separate budget is being allocated every year to comply with all the legal requirement stipulated by SPCB, CPCB & MoEF apart from upkeep of pollution control systems and facilities. Total expenditure for the report period is given in below table.

Sr No.	Parameter	Recurring Cost (Rs. In lacs) For the report period April 21 – September 21
1	Air Pollution Control	2780
2	Liquid Pollution Control	2780
3	Environmental Monitoring and Management	22
4	Solid waste Disposal	87
5	Occupational health	26
6	Green belt	7
Total		2922

xv A copy of the clearance letter

shall be sent by the proponent to concerned Panchayat, Zila parishad/Municip al Corporation. Urban local body and the local NGO, if any, from

who suggestions/repre sentation, if any,

were received while processing the proposal.

The clearance letter shall also be put on the web site of the company by the proponent.

Complied.

Latest submission to the Panchayat, Zila parishad, District Industrial Centre was distributed on 11.11.2016. Copy of the same was submitted to Ministry vide our letter Atul/SHE/MoEF/Visit/3 dated April 4, 2017.

Complied.

Available at company's website at www.atul.co.in

xvi	The	Complied.
~~	implementation	SPCB and MoEF is monitoring through their regular visits.
	of the project vis -	a. 35 a.ia Mozi io momening anough then regular violes.
	à - vis	
	environmental	
	action plan shall	
	be monitored by	
	Ministry's	
	Regional office at	
	Bhopal / SPCB /	
	CPCB.	
xvii	The Project	
	Proponent shall	We informed the public through advertisement and by sending our EC to local
	inform the public	Panchayat, Zila parishad, District Industrial Centre for further actions at their end.
	that the project	
	has been	
	accorded	
	environmental	
	clearance by the	
	Ministry and	
	copies of the	
	clearance letter	
	are available with	
	the	
	SPCB/Committee	
	and may also be	
	seen at website	
	of the Ministry of	
	Environment and	
	Forest at	
	http://www.envfo	
	<u>r.ni.in</u> .	
	This shall be	Complied.
	advertised within	Advertisement was published as directed and copy of the same was submitted to
	seven days from	Ministry vide our letter dated November 14, 2009.
	the date of issue	
	of the clearance	
	letter at least in	
	two local	
	newspaper that	
	are widely	
	circulated in the	
	region of which	
	one shall be in the	
	vernacular	
	language of the	
	locality concerned	
	I	
	and a copy of the	
	same shall be	
	forwarded to the	

	concerned	
	Ministry's	
	Regional office at	
	Bhopal.	
xvii	The project	
i	authorities shall	Start date: May 2009
	inform the	Completion date : May 2010
	Regional Office	Final approval: We have obtained NOC and CCA from GPCB.
	as well as the	Company has funded the project internally and hence not submitted the financial
	Ministry, the date	closure details.
	of financial	
	closures and final	
	approval of the	
	project by the	
	concerned	
	authorities and	
	the date of start	
	of the project.	
8	The Ministry may	Noted.
	revoke or	
	suspend the	
	clearance if	
	implementation	
	of any of the	
	above conditions	
	is not satisfactory.	
9	The Ministry	Noted.
9		Noted.
	reserves the right	
	to stipulate additional	
	conditions, if	
	· ·	
	found necessary.	
	The company in a	
	time bound	
	manner will	
	implement these	
	conditions.	

10	Any appeal against this Environment	Noted.
	clearance shall lie with the national	
	appellate authority, if	
	preferred, within a period of 30	
	days as prescribed under	
	section 11 of National	
	Environment Appellate	
	Authority Act, 1997.	
11	The above	Noted.
	conditions will be enforced, inter -	
	alia under the	
	provisions of the	
	Water	
	(Prevention and	
	Control of	
	Pollution) Act,	
	1974 the Air	
	((Prevention and	
	Control of	
	Pollution) Act,	
	1981 the Environment	
	(Protection) Act,	
	1986, Hazardous	
	Wastes	
	(Management,	
	Handling and	
	Transboundary	
	movement) Rules,	
	2008 and the	
	Public Liability	
	Insurance Act,	
	1991 along with their	
	amendments and	
	rules.	

Table1: Quality of treated effluent

Sr	Paramete	er	Result	s					GPCB
No.			April 21	May 21	June 21	July 21	August 21	September 21	Limits
1	рН		7.18	7.36	7.67	7.71	7.08	7.58	5.5 to 9.0
2	Temperat	cure °C	30.2	30.4	30.2	30.7	30.1	30	40 °C
3	Colour (pt	. co. scale)	40	50	40	70	60	50	
4	Suspende	ed solids, mg/l	47	53	39	48	35	42	100
5	Phenolic (Compounds, mg/l	1.8	0.16	0.19	0.34	0.58	0.65	5
6	Cyanides	, mg/l	ND	ND	ND	ND	ND	ND	0.2
7	Fluorides,	mg/l	0.48	0.75	0.93	0.86	0.78	0.84	2
8	Sulphides	s, mg/l	ND	0.62	1.24	1.65	1.18	0.98	2
9	Ammonic	al Nitrogen, mg/l	5.7	4.8	2.76	6.4	4.6	5.9	50
10	Total Chr	omium, mg/l	ND	ND	ND	ND	ND	ND	2
11	Hexavelent Chromium, mg/l		ND	ND	ND	ND	ND	ND	1
12	2 BOD (3 days at 27°C), mg/l		64	45	48	44	52	42	100
13	COD, mg/	<u>'</u>	216	186	194	210	234	196	250
		Note: ND is Not De	tected.						

Table: 2 Stack Results

				APR 2021	MAY. 2021	JUN. 2021	JULY. 2021	AUG. 2021	SEPT. 2021
Details of	Process and Flue stack					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
Sr. No.	Stack Details	Paramente r	Permissible Limits	Obtained Value	Obtained Value	Obtained Value	Obtained Value	Obtained Value	Obtained Value
Atul East	Site								
1	furnace (Phosgene Plant)	PM	150.0 mg/Nm3	36.7	49.8	41.7	34.9	30.2	36.3
2	2 ()	со	_	ND	ND	ND	ND	ND	ND
2	Reactor (Phosgene plant-New)	Phosgene	0.1 ppm	ND	ND	ND	ND	ND	ND
Caustic C	hlorine Plant								
3	Dechlorination Plant	CI2	9.0 mg/Nm3	8	6	4.4	4.6	6.2	6.2
		HCI	20.0 mg/Nm3	7.8	5.73	4.45	4.72	6.4	6.35
4	Common stack of HCI Sigri unit 1&2	Cl ₂	9.0 mg/Nm3	3.35	3.8	6.2	7.1	6.27	4.1
		HCI	20.0 mg/Nm3	3.2	3.93	6.38	7.29	6.1	4.22
FCB Paint									
5	Foul Gas Scubber	SO ₂	40.0 mg/Nm3	Not in use	Not in use	Not in use	Not in use	Not in use	Not in use
		NOx	25.0 mg/Nm3	red: iii dise	reot in use	Two in use	TACK IT USE	rect in dise	NOC II I USE
Sulfuric A	cid (East Site)					117		10	
6	Sulfuric Acid Plant	SO ₂	2.0 kg/T	1.48	1.25	0.75	0.75	0.52	1.1
		Acid Mist	50.0 mg/Nm3	15.2	22.4	19.1	19.1	9.4	24.6
7	ChloroSulfonic Acid plant reactor		9.0 mg/Nm3	7.8	Not Running	5.5	4.5	7.1	3.8
		HCI	20.0 mg/Nm3	7.95		5.65	4.62	7.3	3.9
Resorcino	l Pinat								
8	Spray Dryer (Resorcinal Plant)	PM	150.0 mg/Nm3	21.2	10.4	18.9	15.7	19.2	24.6
9	Scubber vent (Resorcinal Plant)	SO ₂	40.0 mg/Nm3	Not Running	30.8	Not running	31.3	32.6	29.3
Incinerato	or								
10	Incinerator	PM	150.0 mg/Nm3	64.8	43.7	Not running	Not running	Not running	Not running
		SO ₂	40.0 mg/Nm3	17.2	20.6				
		NOx	25.0 mg/Nm3	14	19.4				
NI Plant				1					
11	Foul Gas Scubber	SO ₂	40.0 mg/Nm3	32.4	13.7	31.7	18.4	30.2	25.8
		NOx	25.0 mg/Nm3	19.6	12.4	19.8	14.9	17.1	11.6
2-4-D Pla	nt							70	
12	Common Scrubber; 2,4D Plant	Cl ₂	9.0 mg/Nm3	7.2	7.1	3.4	6.2	5.5	5.9
		HCI	20.0 mg/Nm3	7.4	7.35	3.55	6.37	5.65	6.06
		Phenol		6.8	6.3	ND	ND	ND	ND
13	Dryer-1	PM with Pesticide compound	20.0 mg/Nm3	10.3	9.6	10.4	Not Running	Not Running	Not Running
14	Dryer-2	PM with Pesticide compound	20.0 mg/Nm3	Not Running	Not Running	Not Running	Not Running	Not Running	Not Running
15	Dryer-3	PM with Pesticide compound	20.0 mg/Nm3	Not Running	Not Running	Not Running	8.8	Not Running	Not Running

16	Dryer-4	PM with Pesticide compound	20.0 mg/Nm3	Not Running					
17	Dryer-5	PM with Pesticide compound	20.0 mg/Nm3	Not Running	Not Running	Not Running	10.9	12.6	15.6
NBD Plant .									
18	Spray Dryer	PM	150.0 mg/Nm3	Not in use					
19	Scrubber S-902	Phosgene	0.1 ppm	ND	ND	ND	ND	ND	ND
		HCI	20 mg/Nm3	11.9	13.8	14.9	12.1	9.4	10.1
20	Scrubber S-801/802	NOx	25.0 mg/Nm3	7.5	16.7	12.6	17.4	21.6	18.4
CP Plant									
21	MCPA	Cl ₂	9 mg/NM ³	Not Running					
		HCI	20 mg/NM ³	1	-				55
		SO ₂	40 mg/NM ³	1					
22	Fipronil	5O ₂	40 mg/NM ³	Not Running					
	(50)	HCI	20 mg/Nm3						
23	lmidacloprid	NH ₃	175 mg/Nm3	Not Running					
24	Pyrathroids	SO ₂	40 mg/Nm3	Not Running					
		HCI	20 mg/Nm3	1					
25	Stack at Amine Plant	NH ₃	175 mg/Nm3	145	130	115	145	102	128
MPSL Plant									
26	Phosgene Scrubbr at MPSL	Phosgene	0.1 ppm	ND	ND	ND	ND	ND	ND
27	Central Scrubber at MPSL	Phosgene	0.1 ppm	ND	ND	ND	ND	ND	ND
NICO plant			84441838320				10208	into second	30.000
28	Central scrubber at Nico Plant	Acetonytryl e, IPA	-	Not Running					
Ester Plant							3	53 6	
29	Scrubber at Ester plant for Glyphosate	Formaldehy de	10 mg/Nm3	Not Running					
30	Central Scrubber MCPA Plant	HCI	20 mg/Nm3	Not Running					
31	MPP plant scrubber	HCI	20 mg/Nm3	8.1	Not Running				
		Phosgene	0.1 ppm	ND					
Atul West S	ite								
32	Shed A05/03/44	CI ₂	9 mg/NM ³	7.75	5.35	6.2	7.3	4.6	8.1
		HCI	20 mg/NM ³	7.9	5.2	6.37	7.5	4.8	8.3
33	Shed B2/12/24 Reaction Vessel	Cl ₂	9.0 mg/Nm3	6.4	7.9	7.1	6.3	5.1	7.9
		HCI	20.0 mg/Nm3	6.2	8.12	7.3	6.47	5.2	5.2

34	Shed B18/02/24 Fan	SO ₂	40 mg/NM ³	Not Running	13.8	17.4	34.1	27.9	20.6
		Cl ₂	9 mg/NM ³		6.2	4.9	5	8.5	7.9
		HCI	20 mg/NM ³		9	5	5.1	8.73	8.1
35	Shed C5/20/15 Chlorinator	Cl ₂	9.0 mg/Nm3	7.9	6.2	5.2	3.8	7.4	7.4
		HCI	20.0 mg/Nm3	8.1	6.37	5.35	3.9	7.6	7.6
36	Shed D Niro Spray dryer No. 45	PM	150.0 mg/Nm3	Not Running	Not Running	Not Running	Not Running	Not Running	94
37	Shed D Niro Spray dryer No.50	PM	150.0 mg/Nm3	Not Running	Not Running	Not Running	Not Running	Not Running	Not Running
38	Shed E 7/12/49 Spray Dryer	PM	150.0 mg/Nm3	41.7	69.7	Not Running	Not Running	Not Running	44
39	St. J. F. F. W. H. F. B. L. W.	- C1	0.0 01 2	No. B	No. Barrier	N. D.	No Possilia	N P	N . B
33	Shed F F6/1/15 Reaction Vessel	CI ₂	9.0 mg/Nm3	Not Running	Not Running	Not Running	Not Running	Not Running	Not Running
40	Sheet C 10/8/1/marrian	HCI	20.0 mg/Nm3	Non Dunning	No. Propins	Mat Disputation	Net Donnier	Mar Domain a	Net Disseries
40	Shed G 10/8/1 (receiver)	CI ₂	9.0 mg/Nm3	Not Running	Not Running	Not Running	Not Running	Not Running	Not Running
41		HCI	20.0 mg/Nm3		F 0	71	E.F.	73	7.1
41	Shed H 11/6/17 chlorinator	CI ₂	9.0 mg/Nm3	4.3	5.8	7.1	5.5	7.1	7.1
43		HCI	20.0 mg/Nm3	12.4	14.8	14.7	10.6	11.7	11.2
42	Shed K K-13/3/4 Final of Sulfuric acid	SO ₂	2.0 kg/T	0.8	1.2	1.12	0.45	1.2	1.6
43	plant	Acid Mist	50.0 mg/Nm3	2	4.6	4.65	1.6	20.6	8.2
43	Shed J15/09/25	HBr	-	ND	ND	ND	ND	ND	ND
44	Shed J12/01/42	SO ₂	40 mg/NM ³	30.5	36.2	20.9	13.6	25.9	33.6
	Sned 312/01/42	502	40 mg/NM ³	27.9	29.8	Not Running	Not Running	24.7	19.1
		CI ₂	9.0 mg/Nm3	7.5	5.9	1		7.9	6.4
		HC1	20.0 mg/Nm3	7.7	11.4			8.12	6.6
45	Shed J12/03/36	SO ₂	40 mg/NM ³	Not Running	Not Running	Not Running	Not Running	Not Running	Not Running
		HC1	20.0 mg/Nm3			1007.000.00			
46	Shed N Scrubber Fan N20/08/24	CI ₂	9 mg/NM³	7.9	5.5	6.4	6.7	6.1	7.9
		HC1	20 mg/NM ³	8.1	10.2	17.1	6.88	6.3	8.13
47	Shed N Scrubber Fan N20/02/41	SO ₂	40 mg/NM ³	34.5	24.7	33.2	20.6	34.2	29.7
48	Sulfer Black Plant	H ₂ S	-	ND	ND	ND	1.12	ND	ND
		NH ₃	175 mg/NM ³	140	79.9	90	110	94	125
49	Sulfer Dyes plant	H₀S	-	ND	ND	ND	ND	ND	ND
		NH ₃	175 mg/NM ³	39.8	81.6	94.8	75.1	56	106
50	Flavors & Fragrances Plant	HC1	20 mg/NM ³	Not Running	Not Running	Not Running	Not Running	Not Running	Not Running
Atul No									
51	N-FDH Plant Catalytic Incinerator	PM SO ₂	150.0 mg/Nm3 40.0 mg/Nm3	Not Running	Not Running	Not Running	Not Running	Not Running	Not Running
		502	40.0 mg/ Mins						
		NOx	25.0 mg/Nm3						
		Formaldeh yde	10.0 mg/Nm3	ec.					
52	PHIN Plant	Phosgene	0.1 ppm	ND	ND	ND	ND	ND	ND
53	PHIN-II Plant	HC1	20 mg/NM ³	3.7	7.9	7.9	7.3	1.3	2.1
54	DDS Plant (Pharma Plant)	NH ₀	175 Mg/Nm3	130	90	75	50	44	96
55	SPIC II Plant (DCDPS)	SO ₃		15.8	ND	Not Running	24.75	17.6	11.8
		NH ₃	175 mg/Nm3	155	140	140	130	160	125
56	SPIC I Plant	INFI3	TIO THE/THE	155					
56 57	SPIC I Plant SPIC IV Plant	NH ₃	175 mg/NM ³	80	110	80	155	140	136

Sr. No.	Stack Details	Paramente	Permissible	Obtained Value	Obtained Value	Obtained Value	Obtained	Obtained	Obtained
		r	Limits				Value	Value	Value
East site									
1	FBC boiler El	PM	100 mg/Nm3	40.4	Not Running	46.9	51.7	Not Running	49.7
		SO ₂	600 mg/Nm3	264		272	214	2 - 0 - 0 C C C C C C C C C C C C C C C C	215
	7	NOx	600 mg/Nm3	316		246	201		256
2	FBC boiler E2	PM	100 mg/Nm3	Not Running	50.9	57.9	45.1	49.7	Not Running
		SO ₂	600 mg/Nm3	5-5-4	265	259	224	215	
	-	NOx	600 mg/Nm3	1	303	231	245	256	
3	FBC boiler E3	PM	100 mg/Nm3	68.4	76.4	Not Running	Not Running	54.7	54.7
		SO ₂	600 mg/Nm3	334	239	Princip.		208	208
		NOx	600 mg/Nm3	310	285			196	196
4	Hot Oil Unit	PM	150.0 mg/Nm3	11.7	34.6	39.6	23.6	31.7	40.3
	(Resorcinol Plant)	SO ₂	100 ppm	4.8	10.4	11.6	9.9	6.2	9.3
		NOx	50 ppm	17.6	29.6	24.8	33.2	40.2	30.2
5	DG set 1010 KVA (Standby)	PM	150 mg/Nm ³	23.4	28.6	34.5	50.2	37.6	44.7
		SO ₂	100 ppm	5.4	8.3	7.8	9.3	6.3	5.7
		NOx	50 ppm	39.7	30.7	33.9	49.7	29.5	32.4
West Site	<u> </u>								
6	FBC boiler W1	PM	100 mg/Nm3	50.2	61.7	56.7	49.6	56.2	64.7
		SO ₂	600 mg/Nm3	184	194	238	248	320	350
		NOx	600 mg/Nm3	212	201	184	320	362	384
7	Hot Oil Plant shed-B	PM	150.0 mg/Nm3	ND	ND	39.6	23.2	34.1	51.7
	T	SO ₂	100 ppm	ND	3.2	11.6	6.5	6.8	8.6
		NOx	50 ppm	23.8	15.6	24.8	14.8	12.4	13.4
8	Oil burner Shed B	PM	150.0 mg/Nm3	Not Running	Not Running	Not Running	Not Running	Not Running	Not Running
	(Stand By)	SO ₂	100 ppm						
		NOx	50 ppm	1					
9	Boiler (50 TPH 2 Nos) (New boilers) W2,W3	PM	50 mg/Nm3	31.7	34.4	45.7	29.4	38.3	39.4
		SO ₂	600 mg/Nm3	198	180	244	290	210	324
		NOx	300 mg/Nm3	208	219	256	230	222	218
		Mercury	0.03 mg/Nm3	ND	ND	ND	ND	ND	ND
10	DG set 1500 KVA (Stand By)	PM	150.0 mg/Nm3	40.2	33.7	39.7	56.1	42.7	36.1
		SO ₂	100 ppm	6.2	9.6	6.4	11.4	5.8	4.9
à		NOx	50 ppm	25.9	38.4	29.7	39.4	24.8	29.7
North Site		- 40							
11	Thermic fluid heater of DCO/DAP Plant	PM	150.0 mg/Nm3	25.8	35.4	41.7	11.3	30.7	49.3
		SO ₂	100 ppm	5.9	8.4	62	5.9	6.4	10.4
		NOx	50 ppm	23.6	27.6	14.9	19.1	13.2	16.5

Table 3: Ambient Air Monitoring details

Station	Parameter	Limit micro	April 21	May 21	June 21	July 21	August 21	September 21
66 KV	PM 2.5	60	22	24	22	21	24	20
	PM10	100	45	47	45	47	43	35
	SO2	80	12.4	13.5	14.6	10.9	12.2	14.3
	NO_2	80	9.6	10.8	11.7	13.4	14.3	12
	Ammonia	400	ND	ND	ND	ND	ND	ND
	HCI	200	8	ND	7	7.4	7	6.7
Opposite	PM 2.5	60	32.7	32.4	33.5	31.8	29.3	25.6
Shed D	PM10	100	50.1	50.5	51.6	50.1	50.1	44.6
	SO2	80	18.5	16.9	15.7	13.1	11.6	13.9
	NO ₂	80	10.1	11.5	12.6	14.3	13.9	15
	Ammonia	400	ND	ND	ND	ND	ND	ND
	HCI	200	ND	ND	ND	ND	ND	ND
West site	PM 2.5	60	26	28	26	25	20	21
ETP	PM10	100	44	46	44	43	49	34
	SO2	80	13.2	12.8	13.7	11.7	13.6	13.1
	NO ₂	80	10.3	11.6	10.9	14.2	12.4	13.4
	Ammonia	400	ND	ND	ND	ND	ND	ND
	HCI	200	ND	ND	ND	ND	ND	ND
North ETP	PM 2.5	60	21	23	21	26	29	19
	PM10	100	43	45	43	42	46	40
	SO2	80	9.5	10.6	11.5	12.1	14.1	12.7
	NO ₂	80	10.2	11.3	12.5	11.9	13.5	11.3
	Ammonia	400	12	ND	10	8.5	7.6	5.9
	HCI	200	ND	ND	ND	ND	ND	ND
TSDF	PM 2.5	60	23	25	28	24	21	24
	PM10	100	47	49	47	45	41	43
	SO2	80	11.2	13.1	12.3	13.8	10.7	11.6
	NO ₂	80	11.4	12.5	13.8	12.7	10.4	12.5
	Ammonia	400	6	ND	7	6.4	5.7	4.7
	HCI	200	ND	ND	ND	ND	ND	ND
Main Guest	PM 2.5	60	25.3	26.2	24.2	19.7	21.6	26.6
House	PM10	100	45.3	46.2	48.3	41.8	47.7	42.4
	SO2	80	14.3	15.2	14.1	11.2	11	13
	NO ₂	80	21.5	22.4	20.5	13.4	13.7	10.3
	Ammonia	400	ND	ND	ND	ND	ND	ND
	HCI	200	ND	ND	ND	ND	ND	ND
Wyeth	PM 2.5	60	27	29	27	23	27	23
Colony	PM10	100	50	52	50	48	42	45
•	SO2	80	12.4	13.6	11.8	12.6	11.7	11.1
	NO ₂	80	11.2	12.3	13.8	12.4	11.3	10.7
	Ammonia	400	ND	ND	ND	ND	ND	ND
	HCI	200	ND	ND	ND	ND	ND	ND
Gram	PM 2.5	60	32.7	30.6	31.5	30.4	31.1	35.4
panchayat	PM10	100	50.1	50.8	51.7	50.3	46.2	41.9
hall	SO2	80	16.2	14.5	15.4	13.2	12.4	15

	NO ₂	80	22.2	22.6	21.5	22.9	17.3	14.8
	Ammonia	400	ND	ND	ND	ND	ND	ND
	HCI	200	ND	ND	ND	ND	ND	ND
Main office,	PM 2.5	60	38.3	39.2	34.6	37.2	33.6	39.5
North site	PM10	100	52.8	53.7	47.1	46.8	49.2	54.3
	SO2	80	11.3	12.2	10.7	11.6	12.4	13.4
	NO ₂	80	21.3	22.4	12.4	14.6	13.4	15.4
	Ammonia	400	ND	ND	ND	ND	ND	ND
	HCI	200	ND	ND	ND	ND	ND	ND
Haria water	PM 2.5	60	26.5	27.4	29	31.1	30.5	35.5
tank	PM10	100	53.7	54.6	56.4	51.3	46.2	51.8
	SO2	80	11.6	16.8	10.8	12.6	12.3	14.2
	NO_2	80	16.5	17.4	10.5	13.2	11.4	13.5
	Ammonia	400	ND	ND	ND	ND	ND	ND
	HCI	200	ND	ND	ND	ND	ND	ND

Table 4: Fugitive Emission Monitoring details

Plant Area Parameter Prescribed Results of VOCs in Milligram policy Limit					per NM³				
				April	May	June	July	August	September
				21	21	21	21	21	21
2,4 D	Reactor	Phenol	19	10.3	12.7	12.4	6.8	3.3	4.9
	Buffer tank	Chlorine	3.0	0.89	1.05	1.2	1.8	ND	1.7
Resorcinol	Benzene storage tank area near vent	Benzene	15	ND	ND	ND	ND	ND	ND
	Near Extraction/scrubber uni	Butyl tacetate	-	43.6	ND	ND	22.1	1.6	1.8
Pharma	At second floor work area	Ammonia	18	5.2	8.7	10.4	7.5	3.4	3.7
	Ammonia recovery area	Ammonia	18	5.9	7.1	6.4	8.4	4.1	7.8
Ероху - І	At vacuum pump 2nd floor	ECH	10	2.7	2.53	6.4	7.1	5.4	5
	At vessel POS 1208 G.F	ECH	10	1.9	4.4	3.6	5.9	3.7	4.3
Shed H	At second floor work area	Nitrobenzen	5	2.5	3.6	2.9	3.3	0.74	3.8
Shed J	Buffer Tank	Chlorine	3	ND	ND	ND	ND	ND	ND

Table 5: Noise level monitoring data (Day Time)

Sr	Location	Noise Le	evel, dBA					Permissible
No.		April	May	June	July	August	September	Limits, dBA
		21	21	21	21	21	21	
1	66KVA substation	65	66	65	62.9	65.3	62.6	75
2	Opposite shed D	71.2	72.3	71.2	68.5	66	65.2	75
3	West site ETP	67.5	68.4	67.5	64.1	67.1	64.9	75
4	North site ETP	61.3	62.4	63.5	65.2	64.5	62.7	75
5	Near TSDF	65.2	66.3	65.2	63.2	69.2	68.4	75
6	Near main guest house	63.1	64.2	63.1	61.4	64.9	65.4	75
7	At wyeth colony	57.8	58.7	59.6	58.3	66.9	67.3	75
8	Gram panchayat hall	65.5	66.4	65.3	66.2	68.3	64.2	75
9	Near main office North site	62.4	63.5	64	63.7	65.5	66.3	75
10	Haria water tank	64.3	65.2	66.3	67.8	64.3	62.8	75

Table 6: Noise level monitoring data (Night Time)

Sr	Location	Noise L	_evel, dE	BA				Permissible
No.	April May June July August September							Limits, dBA
		21	21	21	21	21	21	
1	66KVA substation	53.5	54.6	55.7	51.7	52.7	51.6	70
2	Opposite shed D	50.6	51.4	52.5	54.8	53	50.8	70
3	West site ETP	53.1	54.2	55.3	52.7	54.2	52.5	70
4	North site ETP	51.4	52.5	51.8	50.7	52.6	58.1	70
5	Near TSDF	57.6	56.7	55.6	51.3	56.2	57.2	70
6	Near main guest house	52.4	53.5	52.4	54.2	50.8	52.2	70
7	At wyeth colony	51.5	52.4	51.3	50.2	51.8	52.6	70
8	Gram panchayat hall	55.6	56.4	55.1	53.7	53.4	54.7	70
9	Near main office North site	53.4	54.3	53.4	52.4	52.4	53.7	70
10	Haria water tank	55.6	56.4	57.3	53.6	50.2	51.4	70

	CSR activities		
Sr. No.	Name of Project	Project cost (Budget)	Total spent till October 2021
1	Enhancement of educational practices in Kalyani Shala	30,00,000	1,05,000
2	Improvement of teaching methodology for primary school children - Adhyapika project	60,00,000	33,65,659
3	Support to tribal children in Atul Vidyamandir	5,00,000	70,000
4	Support to develop a school in a tribal area	15,00,000	11,94,200
5	Provision of scholarships to needy and meritorious students	5,00,000	3,72,634
6	Provision of education kits to children	5,00.000	3,94,504
7	Support needy special children	5,00,000	1,66,670
8	Provide digital education through Tab Lab	25,00,000	6,11,42
9	Conservation of manuscripts	50,00,000	25,00,000
10	Support children with special needs	1,00,000	50,000
11	Promote learning and life skills among children	1,00,000	1,00,000
12	Contribution towards publication of books on Indian culture Ecology Philosophy	3,00,000	3,50,000
13	Skills training to youth as apprentices	1,00,00,000	51,59,79
14	Empowerment of women youth through various vocational training courses	10,00,000	21,04,92
15	Skill development of youth through vocational training with NABARD	18,00,000	8
16	Develop micro entrepreneurs to provide sustainable livelihood	20,00,000	7,69,70
17	Create livelihood opportunities fortribal families by providing cows	35,00,000	9,37,00
18	Empower women through self-help groups	20,00,000	68,47

19	Enhancement of rural health through health camps	10,00,000	5,23,920
20	Promote Nutrition Gardens	10,00,000	2,93,080
21	Establish Atul Medical Diagnostic Centre	5,00,00,000	-5
22	Promote health and wellbeing of adolescents and women (including sampoorna project)	20,00,000	7,11,372
23	Provision of blood units to the needy and deserted patients	2,00,000	2,40,000
24	Support to needy patients	5,00,000	2,03,045
25	Support to disaster relief for COVID-19 pandemic	1,50,00,000	1,23,64,537
26	Construction of walkway and streetlights	70,00,000	55,31,528
27	Infrastructure development in Atul and surrounding villages	45,00,000	33,79,977
28	Establishment of solid waste management system in Atul village	55,00,000	54,83,981
29	Natural resource management	50,00,000	5,02,052
30	Conservation of energy through Solar	30,00,000	-
31	Nature based wastewater recycling project	75,00,000	避
Total C	SR budget	14,30,00,000	4,75,53,482
Adminis	strative overheads	70,00,000	21,58,626
Total		15,00,00,000	4,97,12,108

Atul Ltd

Project: Setting up of an additional captive power plant of 22 MW within the existing chemical manufacturing complex at post Atul, Dist. Valsad.

EC Compliance Report for EC No. SEIAA|GUJ|EC|1(d)|340|2016

Report period: April 2021 - September 2021

Sr No.	Condition		Complia	nce Status			
	onditions :						
A.1 S	Specific Condition:						
1.	Unit shall comply the emission standards mentioned in the Notification by MoEF & CC vide S.O. 3305(E) dated 07/12/2015.	We ensure that at no time the emission level will go beyone tipulated standards l proscribed limits. In such cases l occur					System he same ntinuous offline at e testing edule - II) is NABL
		Parameter	Standard values as per CCA	Unit	April 2 21	,	otember
		DM	100	ing or /N Line 3	Min.	Max.	Avg.
		PM PM(New Boiler)	100 50	mg/Nm ³ mg/Nm ³	40.4 45.7	76.4 29.4	54.76 37.44
		SO ₂	600	mg/Nm ³	180	350	245.71
		NOx	600	mg/Nm ³	184	384	252.42
		NOx (New Boiler)	300	mg/Nm ³	218	256	229

Flue gas stack results for the report period is attached as **Annexure I.**

D.G.SET STACK (D.G.SET)

The Ambient Air Quality is being monitored at regular interval for ensuring the compliance. The testing lab appointed is M/s. Royal Environment Auditing & Consultancy Service, Rajkot NABL Approved.

The maximum value (PM2.5, PM10, SO_2 , NO_2 , Ammonia, and HCl) during the compliance period confirms that at no time the emission level went beyond the stipulated standards. Parameter wise summary is given below:

Ambient air monitoring Reports:

Station	Parameter	Limit micro -	Values for April 21		
		gm/NM³	Min.	Max.	Avg.
66 KV	PM2.5	60	20	24	22.2
	PM10	100	35	47	43.7
	SO ₂	80	10.9	14.6	13.0
	NO2	80	9.6	14.3	12.0
	Ammonia	400	ND	ND	ND
	HCI	200	6.7	8	7.2
Opposite	PM2.5	60	25.6	33.5	30.9
Shed D	PM10	100	44.6	51.6	49.5
	SO ₂	80	11.6	18.5	15.0
	NO2	80	10.1	15	12.9
	Ammonia	400	ND	ND	ND
	HCI	200	ND	ND	ND
Near West	PM2.5	60	20	28	24.3
Site ETP	PM10	100	34	49	43.3
	SO ₂	80	11.7	13.7	13.0
	NO2	80	10.3	14.2	12.1
	Ammonia	400	ND	ND	ND
	HCI	200	ND	ND	ND
Near North	PM2.5	60	19	29	23.2
ETP	PM10	100	40	46	43.2

	SO ₂	80	9.5	14.1	11.8
	NO2	80	10.2	13.5	11.8
	Ammonia	400	5.9	12	8.8
	HCI	200	ND	ND	ND
TSDF	PM2.5	60	21	28	24.2
	PM10	100	41	49	45.3
	SO ₂	80	10.7	13.8	12.1
	NO2	80	10.4	13.8	12.2
	Ammonia	400	4.7	7	6.0
	HCI	200	ND	ND	ND
Main Guest	PM2.5	60	19.7	26.6	23.9
House	PM10	100	41.8	48.3	45.3
	SO ₂	80	11	15.2	13.1
	NO2	80	10.3	22.4	17.0
	Ammonia	400	ND	ND	ND
	HCI	200	ND	ND	ND
Wyeth	PM2.5	60	23	29	26.0
Colony	PM10	100	42	52	47.8
,	SO ₂	80	11.1	13.6	12.2
	NO2	80	10.7	13.8	12.0
	Ammonia	400	ND	ND	ND
	HCI	200	ND	ND	ND
Gram	PM2.5	60	30.4	35.4	32.0
Panchayat	PM10	100	41.9	51.7	48.5
Hall	SO ₂	80	12.4	16.2	14.5
	NO2	80	14.8	22.9	20.2
	Ammonia	400	ND	ND	ND
	HCI	200	ND	ND	ND
Main Office	PM2.5	60	33.6	39.5	37.1
North Site	PM10	100	46.8	54.3	50.7
	SO ₂	80	10.7	13.4	11.9
	NO2	80	12.4	22.4	16.6
	Ammonia	400	ND	ND	ND
	HCI	200	ND	ND	ND
Haria	PM2.5	60	26.5	35.5	30.0
TIGHT		100	46.2	56.4	52.3
	PM10	LILLOU			
Water	PM10 SO ₂		-	16.8	13.1
	SO ₂	80	10.8	16.8 17.4	13.1
Water			-	16.8 17.4 ND	13.1 13.8 ND

The results are below permissible emission standards mentioned in the Notification by MOEF&CC vide S.O. 3305(E) dated December 07, 2015 during the report period is attached as **Annexure II.**

2. All measures shall be taken to prevent soil and ground water contamination

Complied.

We have adequate control measured for any leakages from the plant to prevent groundwater contamination. We are ensuring that solid waste is stored in identified solid hazardous waste storage area, provided with covered shed, impervious flooring and leachate collection facility to prevent soil contamination.

We are regularly monitoring ground water and soil quality through reputed institute (M/s. Pollucon Laboratories Pvt. Ltd, Surat) to access the impacts on soil and ground water quality. The study shows that there is no soil and ground water contamination found.

3. The project proponent shall submit the detailed study report to Gujarat Pollution Control Board (GPCB) at least once in a year, through the reputed institute or university to assess the impacts on soil and ground water quality, if any due to application of waste water generation from the CPP and shall adopt the additional mitigation measures as may be suggested through such studies.

Complied.

Ground water and soil quality is being checked regularly for in and around the unit by reputed and NABL approved agency M/s. Pollucon Laboratories Pvt. Ltd, Surat.

Soil and Groundwater analysis report for year 2020 has been submitted to your good office vide our letter June 26, 2021.

A.2: WATER:

4. The fresh water requirement for the proposed expansion shall not exceed 2095 KL/day and it shall be met through the existing water supply system from River par.

Complied.

The average water consumption for the report period is 1307.5 KL/day only which is well within the permissible limit of 2095 KL/Day. Detailed break up is given in below table:

Sr No.	Month	Qty. (KL/Month)	Avg. Qty. (KL/Day)
1	April – 21	31637	1055
2	May - 21	36063	1163
3	June – 21	38733	1291
4	July – 21	41867	1351
5	August – 21	45772	1477
6	September - 21	45227	1508

The maximum value during the report period confirms that at no time the water consumption went beyond the stipulated value. Fresh water requirement is met through the existing water supply system from river Par.

5. Metering of water shall be done and its records shall be maintained. No ground water shall be tapped in any case for meeting the project requirements.

Complied:

Magnetic water flow meter is attached at inlet line of ETP and reuse line (outlet) at RO permeate line. Its records are regularly maintained. We are not using ground water tapped in any case for meeting the project requirements. Our source of water is river Par.

Water meter @reuse line

6. The industrial effluent generation from the proposed expansion shall not exceed 270 KL/day and entire quantity of effluent shall be utilized for ash quenching, dust suppression, fire hydrant make up, gardening plants, floor cleaning.

Complied.

Waste water generation is not exceeding prescribed limit of 270 KL/Day during report period. The average wastewater generation for the report period is 135 KL/day only which is well within the prescribed limit of 270 KL/Day and entire waste water quantity is utilized / reused after giving neutralization & RO treatment.

Entire quantity of waste water is being utilized in ash quenching, coal storage yard to attend coal smoldering, dust suppression, fire hydrant make up, gardening plants floor cleaning and no waste water discharged to ETP. Detail break up is given in below table.

Sr No.	Month	Waste Water Generation (KL/Month)	Avg. Waste Water Generation Reused Qty.(KL/Day)
1	April – 21	5379	174
2	May - 21	5270	176
3	June – 21	3534	114
4	July – 21	2870	96
5	August – 21	3441	111
6	September - 21	4168	139

7. There shall be no discharge of industrial effluent from the proposed project in any case.

Complied.

Industrial waste water generation is not exceeding prescribed limit of 270 KL/Day during report period. Neutralization pit has been put in service for waste water generated from D.M. Plant followed by RO system. RO permeate is recycled back and reject is utilized in ash quenching and coal storage yard to attend coal smoldering, dust suppression, fire hydrant make up, Gardening plants, floor cleaning.

Please refer table of waste water generation (KLD) in point no.6.

Hence, Our CPP unit is achieved ZLD. No Discharge of industrial effluent from the project in any case.

8. Domestic waste water generation shall not exceed 1 KL/day Which shall be disposed of into soak system.

Complied.

Domestic water generation in not exceeding the prescribed limit of EC during report period.

The average wastewater generation for the report period is **0.54 KL/day** only which is well within the limit. Domestic waste water disposed through septic tank system.

Sr No.	Month	Domestic Waste Water Generation (KL/Day)
1	April – 21	0.63
2	May - 21	0.66
3	June – 21	0.48
4	July – 21	0.52
5	August – 21	0.45
6	September - 21	0.52

9. The unit shall provide metering facility at the inlets and outlets of the collection cum reuse system of waste water and maintain records of the same.

Complied.

Magnetic Flow Meter is provided at the inlet of the collection tank and reuse system of waste water and records are being maintained.

Photograph of water meter is shown below:

Water meter @Inlet line

Water meter @Reuse line

We are reusing treated waste water in ash quenching, coal storage yard to attend coal smoldering, dust suppression, fire hydrant make up, Gardening plants & floor cleaning. Hence, we are achieving ZLD.

		No was	ste water	discharge to ETP	from our 22 MW Captiv	ve power
10.	Proper logbooks of waste water reuse system showing quantity and quality of effluent reused shall be maintained and furnished the GPCB from time to time.	water g	properly generatio	n & reuse data sl	ok of water consumption nowing quantity and qu ough EC compliance re	uality of
11.	Rain water harvesting of rooftop rain water shall be undertaken as proposed in the EIA report of the project and the same water shall be used for the various activities of the project to conserve fresh water as well as to recharge ground water through percolation wells. Before recharging the rain water, pre-treatment must be done to remove suspended matter.	collecte cooling We have water of as we remove our construction of monstruction addition to rechological National Natio	o rain well tower. ve alread lrains to ving nece have pu suspend sumption rom river lams and to above arge bore. o. of Ponday of Ponday	y three numbers of collect and harves ssary pre - treatment of matter. We are during the rainy do a pumping facility rary sand bag damore additional free e, surface runoff wwells.	neds and New TG but and used as make up we for check dams in nature train water in monsoon ent to remove suspended water to clarifloculator creating facility/ capacity d water with zero river days. Besides this, there are non top of dam towards flowing rain water in river ater and roof top water water and roof top water during 2021.	al storm a season d matter units to to cater lrawls of are three We also the end er Par. In r is used
A.3 A	Air:					
12.	Existing two coal fired steam boilers shall be replaced with two AFBC Boilers having capacity 50 TPH each.		coal fire		e replaced with higher of acility (4 field ESP).	efficiency
13.	Fuel (Indian coal/and or Imported coal and or Lignite) to the tune of 16725 MT/M shall be used for proposed boilers.	the tune of The average fuel consumption (coal lignite) for the report period				
			Sr No.	Month	Fuel consumption MT	
			1	April - 21	15296	
			2	May - 21	14946	
			3	June – 21	12956	4
			4	July - 21	15492	4
			5 6	August - 21	16095	-
			Ö	September - 21	16026	_
				_	mpliance period confirm	
		no time	the fuel	consumption wen	t beyond the stipulated v	value.

14.	Sulfur and ash content of the fuel to be used shall be analyzed and its record shall be maintained.	proposition the proximal content, llignite. Ash Content	d. using Indian coal or Impo on as per availability. We mate & ultimate analysis o GCV, Sulphur content a tent: 30 - 35 % (Indian Co Content: <0.1% (Indian Co	are regularl of coal Lign nd heavy r al), 10 - 12	y monitor and analyze lite which show % Ash metal present in coal % (Imported coal)	
15	A Long term study of radio activity and heavy metal contents in coal/ lignite to be used shall be carried out through a reputed institute and results thereof analyzed regularly and reported along with monitoring reports. Thereafter mechanism for an in - built continuous monitoring for radio activity and heavy metals in coal/lignite and Fly ash (Including bottom ash) shall be put in place.	It may be lignite. H 30/2019(with record with record with record with record with report	activity and heavy metal out and report submitted nee/03 dated June 30, 201 e noted that we have not flowever, further to you (SEAC)/201, It may please ommended institute for all be submitted. Inot found the inbuilt continuity metal in coal lignite any ough we have still continuity such online system and we same.	ed vide ou 8. Found radiod ur letter no be noted the carrying ou nuous moni ywhere in Ir tinued our	active element in coal b. F. No. 18 - A - at we are in discussion t above analysis and toring for radio activity adia as well as abroad. search for agencies	
16.	Height of flue gas stacks attached to boilers shall be minimum 74.58 meters.	_	l. the stack is 106 meters. ⁻ height of stacks as per C		ard as given below:	
		Stack No.	Stack attached to	Stack Height In meter	APCM	
		1	Boiler (50 TPH x 2Nos.)	106	ESP with 4 field	
			rs: Stack Height H=14(Q) ⁽ f the stack is 106 meter		actually higher than	
17.	A flue gas stack of 74.58m height shall be provided with online monitoring system to proposed steam boiler.	h Height of the stack is 106 meters attached to Boiler (50 TPH $ imes$ 2				
	Mercury gas emission from stacks shall also be monitored on periodic basis.	Complied Mercury approved	emission is also monito	red on mo	nthly basis by NABL	
			ury stack emission data pl ury is detected in Flue gas		•	

18. High efficiency Electro static precipitators (ESP) with efficiency not less than 99.9% shall be installed for control of flue gas emission from the proposed Boilers.

Complied.

We have installed high efficiency Electro Static Precipitator (ESP) (4 field) with 99.9% efficiency to control of flue gas emission within the permissible limit. The monitoring reports shows that average SPM emission is identify 37.44 mg/Nm³ which is below permissible limit of 50mg/Nm³. Photograph of ESP is shown below:

ESP

The ESP shall be operated efficiently to ensure that particulate matter emission does not exceed the GPCB norms.

Complied.

GPCB Permissible limit for PM is 50 mg/NM³. Particulate matter emission did not exceed the GPCB norms during report period Which shows that ESP is working efficiently (99.9%).

For PM stack emission data please refer specific condition No.1

The control system shall be designed and integrated in plant DCS in such a way that amended from ESP exceeds the specified standard prescribed in the Environment (protection) Rules 1986 as amended from time to time, utilization of boiler capacity shall so that flue gas emission from the stack meets with the specified standards or boiler shall shut down totally.

Complied.

We have designed and integrated in Plant DCS in such a way that in event of ESP in working not efficiently or something found fault or operation issue due to which flue gas emission go beyond the specified standard prescribed in the Environment (protection) Rules 1986 as amended from time to time than in such cases / occurrence we will intimate to board & authority to stop the operation plant or decrease the load of power plant. We will not restart or increase the load until the control measures are rectified to achieve the 100 percent efficiency.

Flue gas emission from the stack meets with the specified standards prescribed in the Environment (protection) Rules 1986 as amended from time to time for the report period.

For stack emission data please refer specific condition No.1

19. Third party monitoring of the functioning of ESP along with efficiency shall be carried out once in a year through a reputed institute / organization.

Complied.

We are regularly monitoring the functioning of ESP along with efficiency once in a year through NABL accredited and MoEF approved agency.

The monitoring has been carried out by GPCB approved (schedule - II) M/s. Pollucon Laboratories Pvt.Ltd, Surat NABL approved. ESP efficacy found satisfactory (i.e. 99.9% efficiency).

20.	Lime stone injection technology shall be adopted to control SO ₂ and it shall be ensured that SO ₂ levels in the ambient air do not exceed the prescribed	We al	Complied. We already have lime injection system to control SO ₂ emission. Ambient Air quality analysis report shows that SO ₂ levels is below the prescribed standards during the report period. For Ambient Air quality data please refer specific condition No.1				
	standards.	For An	nbient Air	quality data please r	efer specific condition No.	1	
21.	The company shall prepare schedule and carry out regular preventive maintenance of mechanical and electrical parts of ESPS and assign responsibility of preventive maintenance to the senior officer of the company.	mainte have (month equipn of prev	mpany is enance of standarc nly, By m nent's of ventive m	all the critical equipm I preventive mainte onthly, yearly) of med ESPS. We have recor naintenance assigned been prepared and r	ompany and regular prevenent is a part of our systemenance schedule actionance and electrical paded the percentage compole work as per schedule. The reviewed approved by serviewed approved by	n. We ivities rts or letion	
22.	Diesel to the tune of 300 Lit/hr shall be used as a fuel in stand – by D. G. Set (1500 KVA)	Compl Diesel		tion during report per	iod is given in below table	<u>:</u>	
			Sr No.	Month	Diesel Consumption (KL/Month)		
			1	April - 21	0.4		
			2	May - 21	5.4		
			3	June – 21	5.2		
			4	July - 21	0.2		
			5	August - 21	0.2		
			6	September - 21	5.2		
23.	The flue gas emission from DG set shall be dispersed through adequate stack height as per CPCB standards. At no time the emissions levels shall go beyond the stipulated standards. Acoustic enclosure be provided to DG set to mitigate the noise pollution.	D.G. se	ate stack et (1010 k ied. ive provid	(VA) as per CPCB sta	e to both DG sets to mitigat		

Online monitoring system shall Complied. 24. be installed to monitor the SOx, Online monitoring system for SPM, SO₂ and NOx is already been NOx and SPM in the flue gas made and connected to CPCB server. stack. FORBES MARSHALL **EnviroConnect** LOGO Forbes Marshall ATUL LTD-VALSAD ATUL LTD, POST-ATUL, VALSAD, VALSAD, GUJARAT - 396020 **Station Report** Station: Stack 1_50 TPH BOILER From: 01-04-2021 00:00:00 To: 30-04-2021 23:59:59 Interval : Daily Function: Average < - Average with less data, C - Calibration mode, M - Maintenance mode, S - Data under scrutiny,</p>
B - Bad data, H - High permissible limit crossed, L - Low permissible limit crossed, P - Processed Data, V - Corrected Data, D - Delayed Data, R-Analyzer drift. Dust Avg SOx Avg Units mg/Nm3 mg/Nm3 0 - 280 0 - 100 0 - 50 01-04-2021 00:00:00 58.46 45,25 02-04-2021 00 00 00 45.28 03-04-2021 00 00 00 58.61 45.30 H 04-04-2021 00:00:00 26,25 58.43 05-04-2021 00:00:00 http://116.114.10.246.6060/enviroconnect Generated By: ATULWALSAD 28-06-2021 13:40:63

	Τ						-
	Callender	SOx Avg	NOx Avg	Dust Avg	1		
	Carcilloti	SOX AVg	NOX AVG	Dust Avg		-	
	Units	mg#4m3	mg/Nm3	mg/him3			
	Range	0 - 280	0 - 100	0-50			
	06-04-2021 00 00 00	26.25	58.45	45.31			
	07-04-2021 00:00:00	26.07	58.43	45.13			
	08-04-2021 00:00:00	26.08	58.35	44.91			
	08-04-2021 00:00:00	26 18	58.42	44.96			
	10-04-2021 00-00-00	26.95	58.48	45 00			
	11-04-2021 00:00:00	25.96	58.49	45.02			
	Section of the sectio						
	12-04-2021 00 00 00	25 93	58.47	45.01			
	13-04-2021 00:00:00	25.96 ≤	58.45 <	45.00 <			
	Report Summary						
	Average	26 08	58 45	45 13			
	Maximum	26.25	58.61	45.31			
	Minimum	25.93	58.35	44 91			
	Std Deviation	0.12	0.06	0.15			
	Geom.Mean	26 08	58.45	45.13			
	Median	26.00	56.45	45.13			
	Mode	26.00	56.45	45.30			
	Total Active Duration						
	Proper 2 of 2		NEW (715, 154 10,446 6989)	anninacered	Generality: ATLWISAD	26 06 JUN 114 05 5	
An arrangement shall also be done for reflecting the online					the online mor		

25. Adequate storage facility for the fly ash in terms of closed silos shall be provided at site. No pond shall be constructed.

Complied.

We have not constructed ash pond for the CPP unit. We have closed three silo of 200 MT and Two silo of 300 MT capacity of each, total 1200 MT capacity, which is well enough for our average generation of report period 133 TPD. We dispatch the fly ash daily from these silos so we have not prepare ash pond.

Fly ash / bottom ash generation and disposal data for report period is shown in below table:

Fly Ash	Unit	April 21	May 21	F	July 21	August 21	September 21
Generation	MT	3628	3083	2708	4321	4466	6348
Disposal	MT	3628	3083	2708	4321	4466	6348

Photograph of Closed silos for Fly ash / Bottom ash:

26.	Handling of the fly ash shall be through a closed pneumatic system.	Complied. We are handling of fly ash through a closed pneumatic system which is shown below:
		Dense phase pneumatic ash handling system
27.	Ash shall be handled only in dry state.	Complied. We are handling ash only in dry state. Sold to cement and brick manufacturer.
28.	The unit shall strictly comply with the fly ash Notification under the EPA and it shall ensure that there is 100% utilization of fly ash to be generated from the unit.	Complied. We are strictly complying fly ash notification under EPA and we are doing 100 % utilization of fly ash to be generated from the unit. For Fly ash / bottom ash generation and disposal data please refer condition No. 25.
29.	The fugitive emission in the work zone environment shall be monitored. The emission shall confirm to the standards prescribed by the concerned authorities from time to time (e.g. Directors of Industrial Safety & Health) Following Indicative guidelines shall be also be followed to reduce the fugitive emission.	Complied. We are regularly (once in month) monitoring fugitive emission in work zone environment to confirm the standard prescribed by the concerned authorities from time to time. And indicative guidelines are strictly followed to reduce the fugitive emission. Measures adopted to control fugitive emission: • All process pumps shall be provided trays to collect probable leakage. • More weight age on selection of MoC of piping shall be given to avoid leakage/spillage. • Overflow system with return line to day tank/storage tank from batch tank will be provided to prevent hazardous material overflow. • De - dusting system is provided at coal storage area, closed silo system is available to collect fly ash. Covered conveyer belt system is available for transfer of coal. Water sprinkle system is available to control dust fugitive emission. • Proper system is provided for decontamination and effective cleaning of drums. • All transfer points are fully enclosed. • All roads are RCC & paved on which movement of raw materials or products are take place. • Maintenance of air pollution control equipment are to be done regularly.

- All the workers are working with proper PPE's. i.e. boiler suit, dust mask, safety goggles, face shield, safety shoes etc.
- Adequate green belt is developed around the plant to arrest the fugitive emissions.

All handing & transport of coal & Lignite shall be exercised through covered coal conveyors only.

Complied.

All handing & transport of coal & Lignite is done through covered coal conveyors only.

Enclosure shall be provided at coal/lignite loading and uploading operations.

Noted and Complied.

Enclosure is provided at coal | Lignite loading and uploading operations.

Water shall be sprinkled on coal / Lignite stock piles periodically to retain some moisture in top layer and also while compacting to reduce the fugitive emission.

Complied.

We are regularly sprinkled water on coal | Lignite stock piles to retain some moisture in top layer and also while compacting to reduce the fugitive emission.

Close Shed for coal storage

All transfer enclosed.

Noted and Complied.

We have on road coal conveying system through covered coal trucks and in plant coal transferring system through closed conveying system. All transfer points are fully enclosed. Fly ash in terms of closed silos shall be provided at site. Handling of the fly ash shall be through a closed pneumatic system.

Adequate dust suppression / extraction system at crusher house as well as for the coal/ Lignite stock yard and other vulnerable areas shall be provided to abate dust nuisance.

Complied.

We have provided adequate dust extraction system (Dust collector) at crusher house is provided While dust suppression system (water sprinkler system) the coal/ lignite unloading areas to abate dust nuisance.

Accumulated coal dust / fly ash on the ground and surfaces shall be removed

/ swept regularly and water the area after sweeping.

Internal roads shall be either concreted or asphalted or paved properly to reduce the fugitive emission during vehicular movement.

Complied.

We have adopt practice for coal dust | fly ash is being cleaned regular basis as per schedule that we have set. We are also ensuring that coal dust and fine particles are being loaded to coal handling plant after spraying water on it.

Complied.

Paver blocks have been provided in the ESP and some internal area of power plant. Concrete Road have been built in the surrounding area of Power Plant to reduce fugitive emissions during vehicle movement.

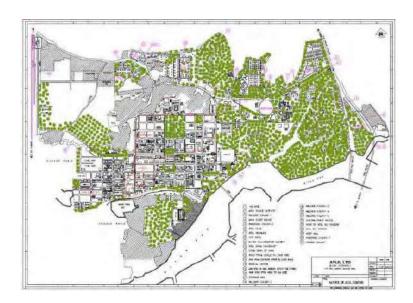
Concrete road at Captive Power Plant

Air borne dust shall be controlled with water sprinkles at suitable locations in the plant.

Coal/Lignite shall be transported through covered trucks only whereas fly ash shall be transported through closed trucks only.

Complied.

Waste water of neutralization pit is being used for dust suppression in coal plant and fly ash handling units. Covered trucks | closed bulkers are being utilized for handling coal and fly ash.


A green belt shall be developed all around the plant boundary and also the roads to mitigate fugitive & transport dust emission.

Complied.

Proper plantation is done all around the plant bounder and also the roads to mitigate fugitive & transport dust emission.

Total industrial area: 1126078.27 sq.mt.

Green belt area: 409030.00 sq.mt (approx. 36% of total industrial plot area) Layout plan with green belt is as shown below:

30. Regular Monitoring of ground level concentration of PM2.5, PM10, NO2, SO2 and Hg shall in the impact zone and its records shall be maintained.

Complied.

We are regularly monitoring ground level concentration of $PM_{2.5}$, PM_{10} , NO_2 , and SO_2 in ambient air of impact zone and its records are maintained as per schedule.

Ambient air quality levels shall not exceed the standards stipulated by GPCB.

Complied.

The location of ambient air quality monitoring stations had been decided in consultation with GPCB so that at least one station is installed in the upwind and downwind direction as well as where maximum ground level concentration are anticipated. This also covers the impact, if any, of the project plant. The same had been shown to authority like SPCB, CPCB & MoEF during their visit to our factory.

The maximum values during the report period confirms that at no time the emission level went beyond the stipulated standards. Parameter wise summary is given in condition no.1.

If at any stage these levels are found to exceed the prescribed limits necessary additional control measures shall be taken be decided in consultation with the GPCB.

Complied.

No such case found till date.

We closely monitor all the parameters through online as well as offline. Furthermore, we have set limit to 90% value of stipulated norms as our internal norms for taking immediate actions like slowing down the production, and | or stopping the plant etc. for taking corrective and preventive actions. This is being managed through our well designed and integrated in-plant DCS.

A.4 SOLID/ HAZARDOUS WASTE:

31.	The company shall strictly comply with the rules and regulations with regards to handling and disposal of Hazardous waste in accordance from time to time.	Complied There is only one Hazardous waste from the project i.e. Used oil. It is stored in drum. It is given to GPCB authorized vendors only in line with the regulation. The used oil generation and disposal quantity from the project for the report period is Nil
	Authorization from the GPCB shall be obtained for collection /treatment /storage disposal of hazardous waste	Complied. We have CCA Amendment No. AWH – 105110, dated November 16, 2019
32.	Hazardous waste sludge shall be packed stored in separate designated hazardous waste storage facility with impervious bottom and leachate collection facility, before its disposal.	Complied There is only one Hazardous waste from the project i.e. Used oil. It is stored in drum. It is given to GPCB authorized vendors only in line with the regulation. The used oil generation and disposal quantity from the project for the report period is Nil.
33.	The used oil shall be sold to only to the registered recyclers / refiners.	Complied. Used oil is being sold to GPCB authorized vendor.
34.	The discarded containers / barrels /bags/ liners shall be sold only to the registered recycler.	Complied. No bags / liners are being utilized for Power Plant.
35.	For storage of fly ash closed silos of adequate capacity shall be provided.	Complied. We have three closed silo of 200 MT and Two silo of 300 MT capacity of each, total 1200 MT capacity, which is well enough for our average generation of 133 TPD.
	No ash pond shall be construed in the project.	Complied. No ash pond is construed in the project.
36.	The fly ash shall be supplied to the manufacturers of fly ash based products such as cement, concrete blocks, bricks, panels, etc.	Complied. Fly ash is being given to cement and bricks manufacturers and also being used for our own bricks manufacturing unit.
EPA and it shall be ensured that there is 100% utilization of fly ash to be generated from the unit.		We are strictly complying fly ash notification under EPA and we are ensuring that that is 100 % utilization of fly ash to be generated from the unit. Fly ash / bottom ash generation data for report period is shown in
		Fly Ash Unit April May June July August September 21 21 21 21 21 21
		Generation MT 3628 3083 2708 4321 4466 6348
		We have done agreement with Ambuja Cement for supply of dry ash.

37.	All possible efforts shall be made for co - processing of the Hazardous waste prior to disposal into TSDF/CHWIF.	Complied The used oil generation and disposal quantity from the project for the report period Nil. The same was given to GPCB authorized vendors only in line with the regulation.
A.5 S	SAFETY:	
38.	The project management shall strictly comply with the provisions made in the Factories Act, 1948 as well as manufacturer, storage and Impact of Hazardous chemicals Rules 1989 as amended in 2000 for handling of hazardous chemicals.	Complied. We are complying all the provisions of Factories act, all the rules and regulation led by MSIHC, 1989.
39.	Necessary precautions like continuous monitoring of hot spot (ignite lignite) using temperature detection systems water sprinklers, avoiding stacking of lignite near stream pipeline etc. shall be made for storing lignite to prevent fire hazard	Complied. Lignite is usually used on the same day of its receiving at site as far as possible. Lignite is not being stored for not more than 3 - 4 Days. However, water spray and fire hydrant system is available for the fuel storage sheds.
40.	All the risk mitigation measures, general & specific recommendations mentioned in risk Assessments Report shall be implemented.	Complied. All the risk mitigation measures, general & specific recommendations mentioned in risk assessments report are implemented.
41.	A well designed fire hydrants system shall be installed as per the prevailing standards	Complied. A well designed tender hydrant system is adequate and as per standards. Fire hydrant Network details:
		Single Hydrant point: 192Nos. Double hydrant point: 07 Nos. Fixed monitor: 11Nos. Hose boxes: 30 Nos. Central hose station: 10 Nos. Hose pipe: 15 mts. 250 Nos. Branch pipes (jet type): 50 Nos. Foam making branch pipe: 03 Nos. Foam compound: 200 liter Foam generator with high expansion foam: 2 Nos.
42.	Personal protective Equipment shall be provided to worker and its usage shall be ensured and supervised.	Complied. PPEs like nose masks, safety goggles, chemical resistive aprons, fire proof apron, Hand gloves, safety helmet, welding goggles, ear mugs, safety shoes etc. are provided to the workers and utilization of the PPEs is followed strictly in Power Plant.

43.	First	Aid	Box	and	requ	ired
	First antide the ur	otes fo	or the c	hemic	al use	ed in
	the ur	nit sho	all be r	eadily	availa	able
	in ad	equat	e qua	ntity of	at all	the
	times					

Complied.

First aid box are kept in each plant and at strategic locations whereas antidotes are kept in the medical Centre.

44. Occupational health surveillance of the workers shall be done its records shall be maintained. Preemployment and periodical medical examination for all the worker shall be undertaken as per the Factories Act &rules.

Complied.

Being done on regular basis as per the Factories Act & rules.

Occupational health surveillance of the workers is carried out on a regular basis as per section - 41 C of the Factories Act and rule - 68T of Gujarat Factories Rules and records are maintained. Regular Medical Checkup of all employees are done by in - house doctors in following manner;

The following medical checkup has been completed during report period:

Medical Check - Up:

Sr No.	Employee	Nos. during report period
1	Staff	1819
2	Operators	
3	Workers	

Various types of tests being performed are as below;

A. Pre - employment check - up:

- 1. Vision
- 2. Colour blindness
- 3. CBC
- 4. Urine
- 5. Height
- 6. Weight
- 7. B/P
- 8. Pulse
- 9. Habit
- 10. Personal History
- 11. Family History
- 12. Identification Mark

B. Annual Checkup:

- 1. Physical checkup
- 2. Vision
- 3. Blood
- 4. Urine
- 5. PFT
- 6. ECG

Our occupational health center & pathology lab is equipped with necessary facilities under supervision of factory medical officer with trained three EHS persons.

Medical Facilities:

- ☐ First Aid boxes in all plants.
- Central Ambulance Room in the middle of the factory.
- Two Ambulance Vans. Out of which one is equipped with ICU facilities.
- Medical Center.
- □ Three full time AFIH certified doctors.
- Equipped with 3 Beds.
- □ Full equipped Pathological lab with advanced diagnostic equipment.
- ECG Equipment.
- Cardiac monitor.
- Defibrillator.
- ☐ Finger pulse Oxymeter.
- Pulmonary Function Test Apparatus.
- 02Administration.
- Antidotes with routine Important and Vital lifesaving Drugs.
- □ Tie up with Kasturba Hospital, Valsad, and Pardi Hospital, Pardi, respectively 7 kms and 3 kms away from Atul.

We also have tie up with external two hospitals (Pardi Hospital and Kasturba Hospital). We have medical checkup schedule once in quarter for Insecticide plant's employees Other necessary items including First - aid medicines, antidotes and equipment as prescribed in the schedule the under Rule - 68 U (b) of the Gujarat factories rules are also been provided.

Remark: All employs were found medically fit to work, no contiguous diseases were observed.

45. Flameproof fittings shall be provided at the proposed power plant.

Complied.

Flame proof fittings are provided.

46. Adequate firefighting facilities shall be provided at the proposed power plant

Complied.

Firefighting facilities are adequate.

The risk to people after a fire has started shall largely depends on the adequacy and maintenance of means to escape, the alarm system, training of the workforce in fire routine and evacuation procedures at Atul Ltd management has proposed to employ well - resourced and

		adequate firefighting network. Details regarding the firefighting capacity of the unit are given below:	
		 Four full - fledged fire hydrant system in the company Water Storage Capacity - 50 million Liters Total hydrant post/ monitors -780 Total length of hydrant line - 15km Fire Fighting Equipment 	
		 DCP 1350 CO2 776 Foam 05Trolly Fire Tenders One fire tender having 1800 Lit water capacity Second multipurpose fire tenders having 5000 Lit water & 500 Foam Third Multipurpose tender having facility of DCP - 500 Kg, Foam - 500 lit and Water - 4500Lit. SCBA sets - 35nos. Emergency alarm system - 532 nos. points spread across the company. Fire station manned round the clock with Siren and Annunciation System. Regular Testing on every Monday. Smoke detectors in the office and labs. Auto water deluging system at critical reactors. Auto water sprinkler system at tank farms Onsite mock drill and firefighting Training. 	
47.	Proper ventilation shall be provide in the work area.	Complied. Proper ventilation provided in work area.	
48.	All transporting routes within the factory premise shall have paved roads to minimize splashes and spillages.	Complied. The roads inside factory are either of cement concrete or Bitumen concrete.	
49.	The project management shall prepare a details Disaster management plan (DMP) for the project as the guidelines from Directors of Industrial safety and Health.	Detailed disaster management plan is already prepared and submitted to your good office vide letter Ref. Atul/SHE/EC Compliance/01 dated December 19, 2019 for	
A.6 N	NOISE:		
50.	To minimize the noise pollution the following noise control measures shall be implemented.	Complied. We are regularly implemented noise control measures to minimize the noise pollution.	

Selection of any new plant equipment shall be made with specifications of low levels.	Complied. All steam vents have attached with silencers. Low noise level is considered as one of the prime specifications while selecting new machines in power plant. For example, replacement of reciprocating type noisy air compressors by low noise emitting screw air compressors.
Manufacturer / supplier of major noise generating machines / equipment like air compressor. Feeder pumps, turbine generators, etc. shall be instructed to make required design modifications wherever possible regulatory norms with respect to noise generation for individual units.	Complied. We are always acknowledge or take care when purchasing of major noise generating machines / equipment like air compressor, feeder pumps, turbine generators, etc., strictly instructed or emphasized to supplier to give less noise generating equipment's as much as possible to regulatory norms with respect to noise generation for individual units.
Regular maintenance of machinery and vehicles shall be undertaken to reduce the noise impact.	Complied. We have routine and preventive maintenance schedule of machinery / equipment and vehicles to be undertaken to reduce the noise impact.
Noise suppression measures such as enclosures, buffers and / or protective measures shall be provided.	Complied. Acoustic enclosures are provided on DG sets. Silencers have been provided on main steam vent valves of Boilers.
Employees shall be provided with ear protection measures like earplugs or earmuffs.	Complied. We have provided ear protection measures like earplugs or ear muffs to all employees on regular basis.
Proper oiling lubrication and preventive maintenance shall be carried out of the machinery and equipment to reduce noise generation.	Complied. Proper oiling lubrication and preventive maintenance is carried out of the machinery and equipment to reduce noise generation.
Construction equipment generating minimum noise vibration shall be chosen.	Noted & Complied. We always use minimum noise vibration generation construction equipment.
Ear plugs and / muffs shall be made compulsory for the construction workers working near the noise generating activities / machines / equipment.	Complied. Our company has well laid down OHS policy to use Proper PPE's by all employees in plant area. Ear plugs and / muffs are compulsory for the construction workers working near the noise generating activities / machines / equipment.
Vehicles and construction equipment with internal combustion engines without proper silencer shall not be allowed to operate.	Noted & Complied. We are permitted those vehicles and construction equipment with internal combustion engines with proper silencer and spark arrestor.

	Construction equipment meeting the norms specified by EP Act, 1986 shall only be used.	Noted & Complied. We are only using construction equipment meeting the norms specified by EP Act, 1986.
	Noise control equipment and baffling shall be employed on generators especially when they are operated near the residential and sensitive areas.	Noted & Complied. We do take care of Noise control equipment and baffling will be employed on generators especially when they are operated near the residential and sensitive areas.
	Noise levels shall be reduced by the use of adequate mufflers on all motorized equipment.	Noted &Complied. We are using mufflers on all motorized equipment to reduce noise levels.
51.	The overall noise level in and around the plant area shall be kept well within the prescribed standard by providing noise control measures including acoustic insulation, hoods, silencers, enclosures, vibration, dampers etc. on all sources of noise generation.	Complied. The overall noise level in and around the plant area to be kept well within the prescribed standard by providing noise control measures including acoustic insulation, hoods, silencers, enclosures, vibration, dampers etc. on all sources of noise generation provided.

The ambient noise levels shall confirm to the standards prescribed under the Environment (protection) Act and Rules. Workplace noise levels for workers shall be as per the factories Act and Rules.

Complied.

The ambient and workplace noise level confirms to the standard prescribed under EPA. The same is being regularly monitored.

The maximum values during the compliance period confirms that at no time the noise emission level went beyond the stipulated standards.

Noise monitoring data of report period is attached as **Annexure III.** Summary is given below:

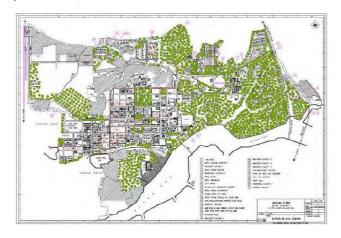
Noise level monitoring data (Day Time)

Sr No.	Location	Permissibl e Limits		or the per tember 2	-
			Min.	Max.	Avg.
1	66KVA substation	75	62.60	66.00	64.47
2	Opposite shed D	75	65.20	72.30	69.07
3	ETP West site	75	64.10	68.40	66.58
4	ETP North site	75	61.30	65.20	63.27
5	Near TSDF	75	63.20	69.20	66.25
6	Near Main guest house	75	61.40	65.40	63.68
7	At Wyeth Colony	75	57.80	67.30	61.43
8	Gram Panchayat Hall	75	64.20	68.30	65.98
9	Near Main Office North site	75	62.40	66.30	64.23
10	Haria Water tank	75	62.80	67.80	65.12

Noise level monitoring data (Night Time)

Sr No.	Location	Permissible Limit	IT.	for the _ – Septer	mber 21
			Min.	Max.	Avg.
1	66KVA substation	70	51.60	55.70	53.30
2	Opposite shed D	70	50.60	54.80	52.18
3	ETP West site	70	52.50	55.30	53.67
4	ETP North site	70	50.70	58.10	52.85
5	Near TSDF	70	51.30	57.60	55.77
6	Near Main guest house	70	50.80	54.20	52.58
7	At Wyeth Colony	70	50.20	52.60	51.63
8	Gram Panchayat Hall	70	53.40	56.40	54.82
9	Near Main Office North site	70	52.40	54.30	53.27
10	Haria Water tank	70	50.20	57.30	54.08

A.7 GREEN BELT AND OTHER PLANTATION:


52. The unit shall develop green belt in at least 68000 sq. area within the premises. Green belt shall comprises of rows of varying height tall native trees with thick foliage in the periphery of the factory premises

Complied.

Green belt is developed and we plant more than 50000 plants every year. Green belt is comprised of at least minimum 3 to 4 raw plantation with minimum height of native trees is 5 to 6 Mtr with thick foliage in the periphery of the factory premises. Proper plantation is done all around the plant boundary and also the roads to mitigate fugitive & transport dust emission.

Total Industrial area: 1126078.27 sq.mt

Total Green belt area: 409030.00 sq.mt (approx. 36% of total industrial plot area)

53. The unit shall also take up adequate plantation at suitable open land on road sides and other open areas in nearby villages or schools in consultation with the Gram panchayat / GPCB and submit an action plan for the same for next three years to the GPCB.

Complied.

We plant more than 50000 plants every year on road sides and other open areas in nearby villages or schools in consultation with the Gram panchayat.

B.OTHER CONDITIONS:

54. In the event of failure of any pollution control system adopted by the unit, the unit shall be safely closed down and shall not be restarted until the desired efficiency of the control equipment has been achieved

Complied.

No such case during the repot period. However, if such case happens we ensure to close down the unit.

55.	All the recommendation, mitigation measures, environments protection measures and safeguard proposed in the EIA report of the project prepared by M/s; Eco chem Sales &Service, Surat & submitted vide letter no NIL dated 03/11/2015 and commitments made during presentation before SEAC, proposed in the EIA report shall be strictly adhered to in letter and spirit.	Complied. All environmental protection measures and safeguards proposed in the project report has been fully complied and report submitted to your good office vide letter Atul/SHE/EC Compliance/06 dated December 19, 2019.
56.	All the recommendation of CREP guidelines as may be applicable from time to time shall be following vigorously.	Complied. Company is following strictly recommendations mentioned in CREP guidelines and compliance status is given as Annexure IV.
57.	A separate environment management cell with qualified staff shall be set up for implementation of stipulated environmental safeguards	Implementation of stipulated environmental safeguards were ensured by the Company's SHE department. Organogram of SHE Department Chairman & Managing Director President — Utility & Services VP — Corporate SHE VP — Legal Assurance SHE VP — Legal Assurance SHE VP — DOH Manager Fire Officers Sinely Fire rigs Doctors Lab Tools Lab
58.	The project authorities must strictly adhere to stipulations made by the Gujarat Pollution Control Board (GPCB), state government and statutory authority.	Noted & Complied We are strictly adhere to stipulations made by the Gujarat Pollution Control Board (GPCB), state government and statutory authority.

59.	No further expansion or modification in the plant likely to cause environmental impacts shall be carried out without obtaining prior	Complied. No further expansion or modification in the plant likely to cause environmental impacts shall be carried out without obtaining prior Environment Clearance from the concerned authority.
	Environment Clearance from the concerned authority.	
60.	The above conditions will be enforced, inter - all under the provisions of water (prevention & Control or pollution) Act, 1974, Air (prevention & Control of pollution) Act, 1981, the Environment (Protection) Act, 1986, Hazardous & other wastes (Management and Trans boundary Movements) Rules 2016 and the public liability insurance Act, 1991 along with their	Noted.
61	amendments and rules. The project proponent shall comply all the conditions mentioned in 'The Companies (Corporate Social Responsibility Policy) Rules, 2014 and its amendments from time to time in a letter and spirit.	Complied. Details of CSR projects done during report period is given in Annexure - V.
62.	The project proponent shall ensure that unit complies with all the environment protection measures, risk mitigation measures and safeguards recommended in the EMP report and Risk .Assessments study report as well as proposed by project proponent.	Complied. All the recommendations suggested in the EMP report and Risk assessments study report as well as proposed by us have been implemented.

63. The project authorities shall earmark adequate funds to implement the conditions stipulated by SEIAA as GPCB along with the implementation scheduled for all the conditions stipulated herein. The funds so provided shall not be diverted for any other purpose.

Complied.

EMP measures for the project are implemented and investment details submitted vide our letter Atul/SHE/EC Compliance/06 dated December 19, 2019.

Further, a separate budget is being allocated every year to comply with all the legal requirement stipulated by SPCB, CPCB & MoEF apart from upkeep of pollution control systems and facilities. Total expenditure made for EMS compliance during the report period is given in below table:

Sr No.	Parameter	Recurring Cost (Rs. In lacs) April 21 - September 21
1	Air Pollution Control	2780
2	Liquid Pollution Control	2780
3	Environmental Monitoring and Management	22
4	Solid waste Disposal	87
5	Occupational health	26
6	Green belt	7
Total		2922

64. The applicant shall inform the public that the project has been accorded environmental clearance by the SEIAA and that the copies of the clearance letter are available with the GPCB and May also be seen at website of SEIAA / SEAC/ GPCB.

Complied.

We have informed the public that the project has been accorded environmental clearance by the SEIAA and that the copies of the clearance letter are available with the GPCB and also be seen at website of SEIAA/SEAC/GPCB.

This shall be advertised within seven days from the date of the clearance letter, in at least two local newspapers that are widely circulated in the region, one of which shall be in the Gujarat.

Complied.

We have given advertisement dated 29.05.2016 in local newspapers that are widely circulated in the region, one of which is given in the Gujarati language and the other in English.

A copy each of the same shall be forwarded to the concerned Regional office of the Ministry.

Complied.

A copy each of the same forwarded to the concerned Regional office of the ministry vide our letter dated January 27, 2017.

65. The project proponent shall also comply with additional conditions that may be imposed by the SEAC or the SEIAA or any other competent authority for the purpose of the environmental protection and management.

Complied.

No additional conditions so far imposed by the SEAC or the SEIAA or any other competent authority for the purpose of the environmental protection and management.

66.	It shall be mandatory for the project management to submit half - yearly compliance report in respect of the stipulated prior environmental clearance terms and condition in hard and soft copies to the regulatory authority concerned on 1st June and 1st December of each calendar year.	Complied. We regularly submit the half - yearly compliance report. The implementation of the project along with environmental actions plans are monitored by the authority time to time. We are regularly submitting half yearly compliance reports to the authority & same is being updated on website.
67.	Concealing factual data or submission of false / fabricated data and failure to comply with any of conditions mentioned above may result in withdrawal of this clearance and attract action under the provisions of Environment (Protection) Act, 1986.	Noted.
68.	The project authorities shall also adhere to the stipulations made by the Gujarat Pollution Control Board.	Complied.
69.	The SEIAA may revoke or suspend the clearance. If implementation of any of the above conditions is not found satisfactory.	Noted
70.	The company in a time bound manner shall implement these conditions. The SEIAA reserves the stipulate additional conditions, if the same is found Necessary.	Noted.
71.	The project authorities shall inform the GPCB, Regional Office of MoEF and SEIAA about the date of financial closure and final approval of the project by the concerned authorities and the date of start of the project.	Complied. We have communicated with the regional officer of MoEF & CC towards the status of work and financial closure time to time. We have also submitted six monthly EC Compliance report periodically in which said information were updated time to time.
72.	This environmental clearance is valid for seven years from the date of issue.	Noted.

73.	Any appeal against this Noted.
	environmental clearance shall lie
	with the National Green Tribunal,
	if preferred, within a period of 30
	day as prescribed under section
	16 of the National Green
	Tribunal Act, 2010.

Annexure I: Flue Gas Stack Results

Sr. No.	Stack Details	Paramente	Permissible	Obtained Value	Obtained Value	Obtained Value	Obtained	Obtained	Obtained
		r	Limits				Value	Value	Value
East site									
1	FBC boiler El	PM	100 mg/Nm3	40.4	Not Running	46.9	51.7	Not Running	49.7
		SO ₂	600 mg/Nm3	264		272	214		215
	7	NOx	600 mg/Nm3	316		246	201	8	256
2	FBC boiler E2	PM	100 mg/Nm3	Not Running	50.9	57.9	45.1	49.7	Not Running
		SO ₂	600 mg/Nm3	500	265	259	224	215	
		NOx	600 mg/Nm3		303	231	245	256	
3	FBC boiler E3	PM	100 mg/Nm3	68.4	76.4	Not Running	Not Running	54.7	54.7
		SO ₂	600 mg/Nm3	334	239	4000		208	208
		NOx	600 mg/Nm3	310	285			196	196
4	Hot Oil Unit	PM	150.0 mg/Nm3	11.7	34.6	39.6	23.6	31,7	40.3
	(Resorcinol Plant)	SO ₂	100 ppm	4.8	10.4	11.6	9.9	6.2	9.3
		NOx	50 ppm	17.6	29.6	24.8	33.2	40.2	30.2
5	DG set 1010 KVA (Standby)	PM	150 mg/Nm ³	23.4	28.6	34.5	50.2	37.6	44.7
		5O ₂	100 ppm	5.4	8.3	7.8	9.3	6.3	5.7
		NOx	50 ppm	39.7	30.7	33.9	49.7	29.5	32.4
West Site	*	(Control	and the same	35360	23800	-3/09/00	V2002000	NACALI V	20000200
6	FBC boiler W1	PM	100 mg/Nm3	50.2	61.7	56.7	49.6	56.2	64.7
	7	SO ₂	600 mg/Nm3	184	194	238	248	320	350
		NOx	600 mg/Nm3	212	201	184	320	362	384
7	Hot Oil Plant shed-B	PM	150.0 mg/Nm3	ND	ND	39.6	23.2	34.1	51.7
	_	SO ₂	100 ppm	ND	3.2	11.6	6.5	6.8	8.6
		NOx	50 ppm	23.8	15.6	24.8	14.8	12.4	13.4
8	Oil burner Shed B	PM	150.0 mg/Nm3	Not Running	Not Running	Not Running	Not Running	Not Running	Not Running
	(Stand By)	SO ₂	100 ppm						
		NOx	50 ppm						
9	Boiler (50 TPH 2 Nos) (New boilers) W2,W3	PM	50 mg/Nm3	31.7	34.4	45.7	29.4	38.3	39.4
		SO ₂	600 mg/Nm3	198	180	244	290	210	324
		NOx	300 mg/Nm3	208	219	256	230	222	218
		Mercury	0.03 mg/Nm3	ND	ND	ND	ND	ND	ND
10	DG set 1500 KVA (Stand By)	PM	150.0 mg/Nm3	40.2	33.7	39.7	56.1	42.7	36.1
		SO ₂	100 ppm	6.2	9.6	6.4	11.4	5.8	4.9
i i		NOx	50 ppm	25.9	38.4	29.7	39.4	24.8	29.7
North Site			•	1					
11	Thermic fluid heater of DCO/DAP Plant	PM	150.0 mg/Nm3	25.8	35.4	41.7	11.3	30.7	49.3
		SO ₂	100 ppm	5.9	8.4	62	5.9	6.4	10.4
		NOx	50 ppm	23.6	27.6	14.9	19.1	13.2	16.5

Annexure II: Ambient Air Result

Station	Parameter	Limit micro gm/NM ³	April 21	May 21	une 21	uly 21	August 21	September 21
	PM 2.5	60	22	24	22	21	24	20
	PM10	100	45	47	45	47	43	35
66 KV	SO2	80	12.4	13.5	14.6	10.9	12.2	14.3
	NO ₂	80	9.6	10.8	11.7	13.4	14.3	12
	Ammonia	400	ND	ND	ND	ND	ND	ND
	HCI	200	8	ND	7	7.4	7	6.7
	PM 2.5	60	32.7	32.4	33.5	31.8	29.3	25.6
Opposite	PM10	100	50.1	50.5	51.6	50.1	50.1	44.6
Shed D	SO2	80	18.5	16.9	15.7	13.1	11.6	13.9
	NO_2	80	10.1	11.5	12.6	14.3	13.9	15
	Ammonia	400	ND	ND	ND	ND	ND	ND
	HCI	200	ND	ND	ND	ND	ND	ND
	PM 2.5	60	26	28	26	25	20	21
1	PM10	100	44	46	44	43	49	34
West site	SO2	80	13.2	12.8	13.7	11.7	13.6	13.1
ETP	NO_2	80	10.3	11.6	10.9	14.2	12.4	13.4
	Ammonia	400	ND	ND	ND	ND	ND	ND
	HCI	200	ND	ND	ND	ND	ND	ND
	PM 2.5	60	21	23	21	26	29	19
	PM10	100	43	45	43	42	46	40
	SO2	80	9.5	10.6	11.5	12.1	14.1	12.7
North ETP	NO_2	80	10.2	11.3	12.5	11.9	13.5	11.3
	Ammonia	400	12	ND	10	8.5	7.6	5.9
	HCI	200	ND	ND	ND	ND	ND	ND
	PM 2.5	60	23	25	28	24	21	24
	PM10	100	47	49	47	45	41	43
	SO2	80	11.2	13.1	12.3	13.8	10.7	11.6
TSDF	NO ₂	80	11.4	12.5	13.8	12.7	10.4	12.5
	Ammonia	400	6	ND	7	6.4	5.7	4.7
	HCI	200	ND	ND	ND	ND	ND	ND
	PM 2.5	60	25.3	26.2	24.2	19.7	21.6	26.6
	PM10	100	45.3	46.2	48.3	41.8	47.7	42.4
Main Guest	SO2	80	14.3	15.2	14.1	11.2	11	13
House	NO ₂	80	21.5	22.4	20.5	13.4	13.7	10.3
	Ammonia	400	ND	ND	ND	ND	ND	ND
	HCI	200	ND	ND	ND	ND	ND	ND
	PM 2.5	60	27	29	27	23	27	23
	PM10	100	50	52	50	48	42	45
Wyeth	SO2	80	12.4	13.6	11.8	12.6	11.7	11.1
Colony	NO ₂	80	11.2	12.3	13.8	12.4	11.3	10.7
	Ammonia	400	ND	ND	ND	ND	ND	ND
	HCI	200	ND	ND	ND	ND	ND	ND
Gram	PM 2.5	60	32.7	30.6	31.5	30.4	31.1	35.4
panchayat	PM10	100	50.1	50.8	51.7	50.4	46.2	41.9
paricilayat hall	SO2	80	16.2	14.5	15.4	13.2	12.4	15

	NO ₂	80	22.2	22.6	21.5	22.9	17.3	14.8
	Ammonia	400	ND	ND	ND	ND	ND	ND
	HCI	200	ND	ND	ND	ND	ND	ND
	PM 2.5	60	38.3	39.2	34.6	37.2	33.6	39.5
	PM10	100	52.8	53.7	47.1	46.8	49.2	54.3
Main office,	SO2	80	11.3	12.2	10.7	11.6	12.4	13.4
North site	NO ₂	80	21.3	22.4	12.4	14.6	13.4	15.4
	Ammonia	400	ND	ND	ND	ND	ND	ND
	HCI	200	ND	ND	ND	ND	ND	ND
	PM 2.5	60	26.5	27.4	29	31.1	30.5	35.5
	PM10	100	53.7	54.6	56.4	51.3	46.2	51.8
Haria water	SO2	80	11.6	16.8	10.8	12.6	12.3	14.2
tank	NO ₂	80	16.5	17.4	10.5	13.2	11.4	13.5
	Ammonia	400	ND	ND	ND	ND	ND	ND
	HCI	200	ND	ND	ND	ND	ND	ND

Annexure III: Noise Data Noise level monitoring data (Day Time):

Sr	Location	Noise L	Permissible					
No.		April 21	May 21	June 21	July 21	August 21	September 21	Limits, dBA
1	66KVA substation	65	66	65	62.9	65.3	62.6	75
2	Opposite shed D	71.2	72.3	71.2	68.5	66	65.2	75
3	West site ETP	67.5	68.4	67.5	64.1	67.1	64.9	75
4	North site ETP	61.3	62.4	63.5	65.2	64.5	62.7	75
5	Near TSDF	65.2	66.3	65.2	63.2	69.2	68.4	75
6	Near main guest house	63.1	64.2	63.1	61.4	64.9	65.4	75
7	At wyeth colony	57.8	58.7	59.6	58.3	66.9	67.3	75
8	Gram panchayat hall	65.5	66.4	65.3	66.2	68.3	64.2	75
9	Near main office North site	62.4	63.5	64	63.7	65.5	66.3	75
10	Haria water tank	64.3	65.2	66.3	67.8	64.3	62.8	75

Noise level monitoring data (Night Time):

Sr Location Noise Level, dBA								Permissible
No.		April 21	May 21	June 21	July 21	August 21	September 21	Limits, dBA
1	66KVA substation	53.5	54.6	55.7	51.7	52.7	51.6	70
2	Opposite shed D	50.6	51.4	52.5	54.8	53	50.8	70
3	West site ETP	53.1	54.2	55.3	52.7	54.2	52.5	70
4	North site ETP	51.4	52.5	51.8	50.7	52.6	58.1	70
5	Near TSDF	57.6	56.7	55.6	51.3	56.2	57.2	70
6	Near main guest house	52.4	53.5	52.4	54.2	50.8	52.2	70
7	At wyeth colony	51.5	52.4	51.3	50.2	51.8	52.6	70
8	Gram panchayat hall	55.6	56.4	55.1	53.7	53.4	54.7	70
9	Near main office North site	53.4	54.3	53.4	52.4	52.4	53.7	70
10	Haria water tank	55.6	56.4	57.3	53.6	50.2	51.4	70

Annexure IV: CREP Compliance

Activity Code No.	Action Point	Compliance Status	Remarks
1	Implementation of Environmental Standards	Complied	APCM are already in place and maintained. We ensured that at no time the emission level will go beyond the stipulated standards prescribed limits.
2	Particulate matter emission reduction	Complied	We have installed high efficiency electro static precipitator (4 field) with 99.9% efficiency to control of flue gas emission (particulate matter emission) within the permissible limit.
3	New / expansion power projects to be accorded Environment Clearance	Complied	EC awarded for setting up an additional power plant of 22 MW, Dated May 20, 2016 EC No. SEIAA/GUJ/EC/1(d)/340/2016
	Development of SO2 & NOx emission standards.	NA	Action by CPCB
4	Development standards for of guide mercury lines / & other	NA	Action by CPCB
	Review of stack height requirement	NA	Action by CPCB
	Install / activate meters / continuous monitoring systems with calibration system.	Complied	The boiler stack is equipped with online continuous monitoring and also kept in CC TV camera surveillance.
5	Use of beneficiated coal	As soon as it is viable option with respect to its limited availability and proximity of source, will be used.	We are purchasing Indian coal from government collieries and hence forced to use the same. We will use Beneficiated coal as & when available.
	Use of abandoned coal mines for Ash disposal	NA	Not Applicable
6	Provide dry ash to the users	Complied. Ongoing process	Being given to local brick manufacturers and Cement industries. We have done agreement between Ambuja cement Ltd and Atul Ltd For supply of dry ash.
	Provide dry ash free of cost	Complied	-
	Adhere to schedule by State Dept.	NA	Action by State Dept.
	Environment Clearance	Complied	-

	Existing plants shall			
	adopt any of systems			
	mentioned in 13(1)			
	Fly ash Mission shall	NA	Action by GOI	
	prepare guideline	IVA	Action by GOI	
	New plants shall			
	promote adoption of	NΙΛ		
	clean coal & clean	NA	_	
	power			
7	CC&A status	Complied	Consent no. AWH no. 105110 valid up	
,	CCC, (Status	Complica	to September 30, 2025.	
	Compliance with respect		Paina shasked & varified by Pagianal	
8	to norms prescribed in	Complied	Being checked & verified by Regional	
	CC&A for last one year		Office of GPCB time to time.	
	Overall compliance with			
9	respect to charter	Yes	Fully complied with all the condition	
	(Yes/No)		stipulated in EC as well as CC&A.	

Annexure V: CSR Activities

	CSR activities		
Sr. No.	Name of Project	Project cost (Budget)	Total spent till October 2021
1	Enhancement of educational practices in Kalyani Shala	30,00,000	1,05,000
2	Improvement of teaching methodology for primary school children - Adhyapika project	60,00,000	33,65,65
3	Support to tribal children in Atul Vidyamandir	5,00,000	70,000
4	Support to develop a school in a tribal area	15,00,000	11,94,200
5	Provision of scholarships to needy and meritorious students	5,00,000	3,72,63
6	Provision of education kits to children	5,00.000	3,94,50
7	Support needy special children	5,00,000	1,66,670
8	Provide digital education through Tab Lab	25,00,000	6,11,42
9	Conservation of manuscripts	50,00,000	25,00,00
10	Support children with special needs	1,00,000	50,00
11	Promote learning and life skills among children	1,00,000	1,00,000
12	Contribution towards publication of books on Indian culture Ecology Philosophy	3,00,000	3,50,000
13	Skills training to youth as apprentices	1,00,00,000	51,59,79
14	Empowerment of women youth through various vocational training courses	10,00,000	21,04,92
15	Skill development of youth through vocational training with NABARD	18,00.000	25
16	Develop micro entrepreneurs to provide sustainable livelihood	20,00,000	7,69,70
17	Create livelihood opportunities fortribal families by providing cows	35,00,000	9,37,00
18	Empower women through self-help groups	20,00,000	68,47

<u> </u>	Enhancement of rural health through	Ī	
19	health camps	10,00,000	5,23,920
20	Promote Nutrition Gardens	10,00,000	2,93,080
21	Establish Atul Medical Diagnostic Centre	5,00,00,000	-5
22	Promote health and wellbeing of adolescents and women (including sampoorna project)	20,00,000	7,11,372
23	Provision of blood units to the needy and deserted patients	2,00,000	2,40,000
24	Support to needy patients	5,00,000	2,03,045
25	Support to disaster relief for COVID-19 pandemic	1,50,00,000	1,23,64,537
26	Construction of walkway and streetlights	70,00,000	55,31,528
27	Infrastructure development in Atul and surrounding villages	45,00,000	33,79,977
28	Establishment of solid waste management system in Atul village	55,00,000	54,83,981
29	Natural resource management	50,00,000	5,02,052
30	Conservation of energy through Solar	30,00,000	-
31	Nature based wastewater recycling project	75,00,000	7 <u>2</u>
Total C	SR budget	14,30,00,000	4,75,53,482
Adminis	strative overheads	70,00,000	21,58,626
Total		15,00,00,000	4,97,12,108

Atul Ltd

Project: Expansion of Chemicals Manufacturing Unit EC Compliance Report for EC F. No. J-11011/108/2015-IA-II (I), Dated February 11, 2019 Report Period: April 2021 - September 2021

Sr No.	Condition	Compliance			
Term	and Conditions:				
ii.	The treated effluent of 3335 cum/day shall be recycled/reused to meet the requirement of different	The treat			S Avg.288 KL/Day
	industrial operations, and the remaining treated	Sr No.	Month	Total Recycle	Avg. KL/Day
	effluent of 20514 cum/day shall be discharge to	1	April 21	9542	318
	estuary of Par River	2	May 21	9231	298
	through the existing	3	June 21	8843	295
	pipeline.	4	July 21	7886	254
		5	August 21	8256	266
		6	September 21	8931	298
		Sr No	Month	Effluent	Ava KL/Dav
		Sr No.	Month	Effluent Discharged to Estuary of Par	Avg. KL/Day
				Discharged to Estuary of Par River	
		1	April 21	Discharged to Estuary of Par River 282154	9405
		1 2	April 21 May 21	Discharged to Estuary of Par River 282154 299056	9405 9647
		1	April 21 May 21 June 21	Discharged to Estuary of Par River 282154	9405
		1 2 3	April 21 May 21	Discharged to Estuary of Par River 282154 299056 286651	9405 9647 9555
		1 2 3 4	April 21 May 21 June 21 July 21	Discharged to Estuary of Par River 282154 299056 286651 297320	9405 9647 9555 9591

and values of various parameters of treated effluent is given in **Annexure 1**.

The maximum values during the compliance period confirms that at no time the emission went beyond the stipulated standards. Summary is given below:

Sr No.	Parameter	Limit	Values for the period April 21 – September 21		
			Min.	Max.	Avg.
1	рН	5.5-9.0	7.08	7.71	7.43
2	Temperature (°C)	40	30	30.7	30.27
3	Colour (pt. co. scale)		40	70	51.67
4	Suspended solids (mg/l)	100	35	53	44.00
5	Phenolic Compounds (mg/l)	5	0.16	1.8	0.62
6	Cyanides (mg/l)	0.2	ND	ND	ND
7	Fluorides (mg/l)	2	0.48	0.93	0.77
8	Sulphides (mg/l)	2	0.62	1.65	1.13
9	Ammonical Nitrogen (mg/l)	50	2.76	6.4	5.03
10	Total Chromium (mg/l)	2	ND	ND	ND
11	Hexavalent Chromium (mg/l)	1	ND	ND	ND
12	BOD (3 days at 27°C) (mg/l)	100	42	64	49
13	COD (mg/l)	250	186	234	206

iii Necessary authorization required under the Hazardous and other Wastes Management Rule, 2016 shall be obtain and the Provisions contained in the Rules shall be strictly adhered to.

Complied.

We have obtained necessary authorization for Hazardous and other waste by obtaining Amendment in Existing CTO after receiving EC.

CTO amendment has been granted by GPCB Vide Letter No. GPCB/CCA-VSD-31316)/ID: 23158/513897, Dated July 17, 2019 (CTO amendment No. AH 102080), Valid Till-November 03, 2019. Renewal for the same has been received vide CCA (AWH-105110 valid till September 30, 2025.

iv National Emission
Standards for organic
chemicals Manufacturing
Industry issued by the
Ministry vide G.S.R. 608(E)
Dated 21 July, 2010 and
Amended from time to time
shall be followed.

Noted & Complied.

We have been following the National Emission Standards since beginning. The location of ambient air quality monitoring stations had been decided in consultation with GPCB so that at least one station is installed in the up wind and downwind direction as well as where maximum ground level concentration are anticipated. This also covers the impact, if any, of the project plant. The same had been shown to authority like SPCB, CPCB & MoEF during their visit to our factory. In total we had selected 10 locations, and monitored successfully. Results are attached herewith.

The Ambient Air Quality is being monitored at regular interval for ensuring the compliance by NABL approved reputed agency.

The analysis reports were within the permissible limits. A detail of analysis report of monitoring report is attached in **Annexure** 2

The maximum values during the compliance period confirm that at no time the emission level went beyond the stipulated standards. Parameter wise summary is given below:

Summary of Ambient Air Quality results:

Station	Parameter	Limit micro- gm/	Values for the period April 21 – September 21		
		NM ³	Min.	Max.	Avg.
66 KV	PM2.5	60	20	24	22.2
	PM10	100	35	47	43.7
	SO ₂	80	10.9	14.6	13.0
	NO ₂	80	9.6	14.3	12.0
	Ammonia	400	ND	ND	ND
	HCI	200	6.7	8	7.2
Opposite Shed D	PM2.5	60	25.6	33.5	30.9
Siled D	PM10	100	44.6	51.6	49.5
	SO ₂	80	11.6	18.5	15.0
	NO ₂	80	10.1	15	12.9
	Ammonia	400	ND	ND	ND
	HCI	200	ND	ND	ND
Near	PM2.5	60	20	28	24.3
West	PM10	100	34	49	43.3

	13.0 12.1 ND ND 23.2
Ammonia 400 ND ND HCI 200 ND ND	ND ND
HCI 200 ND ND	ND
Negr PM2.5 60 19 29	23.2
	20.2
North PM10 100 40 46	43.2
SO ₂ 80 9.5 14.1	11.8
NO ₂ 80 10.2 13.5	11.8
Ammonia 400 5.9 12	8.8
HCI 200 ND ND	ND
TSDF PM2.5 60 21 28	24.2
PM10 100 41 49	45.3
SO ₂ 80 10.7 13.8	12.1
NO ₂ 80 10.4 13.8	12.2
Ammonia 400 4.7 7	6.0
HCI 200 ND ND	ND
Main PM2.5 60 19.7 26.6	23.9
Guest PM10 100 41.8 48.3	45.3
SO ₂ 80 11 15.2	13.1
NO ₂ 80 10.3 22.4	17.0
Ammonia 400 ND ND	ND
HCI 200 ND ND	ND
Wyeth PM2.5 60 23 29	26.0
Colony PM10 100 42 52	47.8
SO ₂ 80 11.1 13.6	12.2
NO ₂ 80 10.7 13.8	12.0
Ammonia 400 ND ND	ND
HCI 200 ND ND	ND
Gram PM2.5 60 30.4 35.4	32.0
Panch- PM10 100 41.9 51.7 ayat Hall SO ₂ 80 12.4 16.2	48.5
302 00 12.4 10.2	14.5
NO ₂ 80 14.8 22.9	20.2
Ammonia 400 ND ND	ND
HCI 200 ND ND	ND
Main PM2.5 60 33.6 39.5	37.1

	Office North Site	PM10	100	46.8	54.3	50.7
		SO ₂	80	10.7	13.4	11.9
		NO ₂	80	12.4	22.4	16.6
		Ammonia	400	ND	ND	ND
		HCI	200	ND	ND	ND
	Haria Water Tank	PM2.5	60	26.5	35.5	30.0
		PM10	100	46.2	56.4	52.3
		SO ₂	80	10.8	16.8	13.1
		NO ₂	80	10.5	17.4	13.8
		Ammonia	400	ND	ND	ND
		HCI	200	ND	ND	ND

V To control source and the fugitive emissions, suitable pollution control devices shall be installed to meet the prescribed norms and/ or the NAAQS.

The gaseous emissions shall be dispersed through stack of adequate height as per CPCB/SPCB Guidelines.

Complied.

For controlling source & fugitive emissions in the work zone environment and raw material storage area is being regularly monitored by NABL approved third party. Numbers of gas detectors are provided in work area for close monitoring. We have installed various APCM, special hood, suction pipe for gases emission, appropriate scrubbers and has stack height as per stipulated condition & CPCB guidelines. Elephant trunk with flexible hoods are also provided at potential leak points, sampling points, man holes, charging points and connected with scrubbers.

We are also monitoring VOC as well as other chemicals in work area as per Factories Act and records are being maintained in Form No. 37.

Solvents are stored in tank farms in separate tanks with proper earthing, flame arresters, lightening arresters, fencing, fire hydrant system, fire extinguishers, flame proof equipment, etc. safety measures. Dedicated scrubbers with stacks of appropriate height (as per the central pollution control board guideline) have been provided to control the emission from various vents. Central exhaust system has been provided at strategic locations and the critical operations evolving the hazardous gases are routed through multiple stages scrubbing system.

The maximum values during the compliance period confirm that at no time the emission level went beyond the stipulated standards. Parameter wise summary is given below, detailed analysis report are attached as **Annexure 3**.

The flue & process stack is being monitored at regular interval for ensuring the compliance by NABL approved reputed agency. Detailed analysis report are attached as **Annexure 4**

vi Solvent management shall be carried out as follows:

(a) Reactor shall be connected to chilled brine condenser system.

Complied.

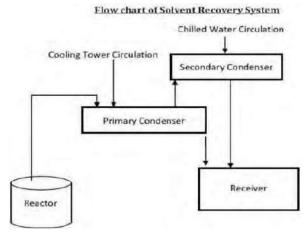
Condensers with chilling systems are provided at point of Solvent recovery to minimized vapour loss as shown below:-

Condenser at Solvent recovery

(b) Reactor and solvent handling pump shall have mechanical seals to prevent leakages.

Complied.

We have provided seals at all Reactors and pump's in order to prevent leakage as shown below:-


Seal at Stirrer

Pump Seal

(c) The condensers shall be Provided with sufficient HTA and residence time so as to achieve More than 95% recovery.

Complied.

Spent solvents are recovered as far as possible as per details given below and all venting equipment are provided with condenser system & scrubber provided with Sufficient Heat Transfer Area (HTA) which helps to achieved more than 95% recovery.

VOC Trap Condenser -02: Chilled water at -15 $^{\circ}$ C is be used to trap any traces of Solvent which is slipped from Secondary condenser.

MEASURES:

To prevent losses of solvents in atmosphere, following infrastructure shall be used:

- Leak Free Pumps for transfer of solvents.
- MSW Gaskets in solvent pipelines to prevent leakage from flanges.
- Minimum number of flanges, joints and valves in pipelines.
- To eliminate chances of leakages from glands of pumps, mechanical seal will be provided at all solvent pumps.
- All the rotating equipment like pumps will be installed with Mechanical Seals to arrest any sort of emissions.
- **(d)** Solvents shall be stored in a separate space specified with all safety measures.

Complied.

We have made separate provision for solvent storage & is installed as per PESO regulation wherever applicable with all details of Storage area, operating temperature and pressure, types of possible hazards and control measures.

Tank Farm

Details For Solvent Storage is as per Annexure 5.

(e) Proper earthling shall be provided in all the electrical equipment wherever solvent handling is done.

Complied.

Earthing pit is provided in all electrical equipment wherever solvent handling is done as below:-

(f) Entire plant shall be flame proof. The solvent storage tanks shall be provided with

Complied.

Entire plant is flame proof installations, storage tanks are provided with breather valve for all prevention of losses.

Separate provision is made for solvent storage & is installed breather valve to prevent as per PESO regulation wherever applicable with all details losses. of Storage area, operating temperature and pressure, types of possible hazards and control measures. Details for solvent storage is given in above point vi (d). (a) All the solvent storage Complied. tanks shall be connected with All the solvent storage tanks are being connected with vent condensers with chilled condensers & chilled water circulation, Spent solvents are recovered as far as possible and all venting equipment are brine circulation. provided with condenser system & scrubber. Details for VOC mitigation is given in above point vi ©. vii Complied. Total fresh water requirement shall not exceed The average water consumption for the report period is Avg. 21950 cum/day, proposed to 11199 KL/day only, which is well within the limit. Detail break be met from Par River. Prior up is given in below table: permission in this regards shall be obtained from the Sr Month Qty. Avg. Qty. concerned regulatory (KL/Month) (KL/Day) No. 317677 authority. April 21 10589 1 325355 2 May 21 10495 3 10274 June 21 308227 10425 323174 4 July 21 5 August 21 359684 11603 September 21 414204 13807 The maximum values during the compliance period confirm that at no time the wastewater generation went beyond the stipulated value. Fresh water requirement is met through the existing water supply system from river Par. viii Industrial/trade effluent Complied. shall be segregated into High COD/TDS and Low Industrial/trade effluent is being segregated as shown below into High TDS|COD & Low TDS|COD. High COD|TDS stream COD/TDS effluent streams. is subjected to MEE and ATFD. Low TDS|COD stream is High TDS/COD shall be passed through stripper treated in in-house effluent treatment plant and discharged followed by MEE and ATFD. as per stipulated norms. It's not exceeding then prescribed Low TDS effluent stream limit of EC & CCA. The average wastewater generation for shall Be treated in ETP/RO the report period is as under:

to meet the prescribed

standards.

	Break up of effluent KI/Day				
Sr No.	Month	High TDS COD	Low TDS COD		
1	April 21	133	9405		
2	May 21	113	9647		
3	June 21	149	9555		
4	July 21	132	9591		
5	August 21	127	10674		
6	September 21	129	12426		

The maximum values during the compliance period confirm that at no time the wastewater generation went beyond the stipulated value.

Prescribed Standards: The final discharged treated waste water quality is also monitored by NABL approved laboratory at regular interval for ensuring the compliance. The testing Lab appointed is GPCB approved (schedule-II) M/s. Pollucon Laboratories Pvt.Ltd, Surat which also has NABL approval. Apart from the above, we are continuously monitoring pH, TOC, flow, of treated effluent as per CPCB guidelines and also connected with GPCB and CPCB server.

Details for monitoring results is given in condition ii.

Process effluent/any wastewater shall not be allowed to mix with storm water.

The storm water from the premises shall be collected and discharged through a separate conveyance system.

Complied.

Process effluent/any wastewater are being discharged to estuary of Par river through the existing pipeline and are not mixed with storm water line.

We have already three numbers of check dams in natural storm water drains to collect and harvest rain water in monsoon season after giving necessary pre-treatment to remove suspended matter as we have pumped the rain water to clarifloculator units to remove suspended matter. We have facility| capacity to cater our consumption with rain harvested water with zero river drawls of water from river during the rainy days. Besides this, there are three check dams and pumping facility to harvest rain water. We also construct temporary sand bag dam on top of dam towards the end of monsoon to store additional free flowing rain water in river Par. In addition to above, surface runoff water and roof top water is used to recharge bore wells.

Total No. of Pond: 2 Nos.

Capacity of Pond: (1 Nos. x 12000 KL) & (1 Nos. x 2000 KL)

		Carra 200 bar bar and 40 50 bar 1/1 at 1 at 2004
		Company has harvest 10.59 lac KL rain water during 2021.
	Ller-male de la controlla de all	Caracliad
X	Hazardous chemicals shall be stored in tanks, tank	Complied. Storage details of Hazardous materials along with control
	farms, drums, carboys etc.	measure are as per Annexure 6 .
	Flame arresters shall be	'
	provided on tank farm, and	
	solvent transfer through	
	pumps.	
xi	Process organic residue and	Complied.
	spent carbon, if any, shall be Sent to cement industries.	We have obtained necessary authorization for Hazardous
	ETP sludge, process	We have obtained necessary authorization for Hazardous and other waste by obtaining amendment in existing CTO
	inorganic & evaporation salt	after receiving EC and waste is disposed off accordingly.
	shall be disposed off to the	
	TSDF.	CTO amendment has been granted by GPCB Vide Letter No.
		GPCB/CCA-VSD- 313(16)/ID: 23158/513897, Dated July 17, .2019 (CTO amendment No. AH 102080), Valid Till-
		November 03, 2019. Renewal for the same has been received
		with consent order no. 105110 valid up to September 30,
		2025.
		Copy of CTE and CTO was submitted to Ministry vide our letter Atul/SHE/EC Compliance/01 dated December 19, 2019.
xii	The Company shall strictly	
	comply with the rules and	
	guidelines under	1989. We are complying with Hazardous and Other Wastes
	Manufacture, Storage and	(Managements and transboundary Movement) Rules, 2016
	Import of Hazardous Chemicals (MSIHC) Rules,	towards ETP sludge, used Oil & empty drums- handling, and storage & disposal to authorized facility/TSDF. We have
	1989 as amended time to	obtained necessary authorization for Hazardous and other
	time.	waste by obtaining amendment in existing CTO after
	All transportation of	
	Hazardous Chemicals shall	vide letter No. GPCB/CCA-VSD-313(16)/ID: 23158/513897,
	be as per the Motor Vehicle Act, 1989.	dated July 17, 2019, further renewed vide consent order no. AWH 105110 valid up to September 30, 2025.
	, , .c., 1000.	7. (VIT 100110 Valid up to optember 30, 2023.
		We have obtained common TSDF memberships apart from
		our own TSDF & Incineration facility.
		Conditions Compliance
		4. Responsibilities of the occupier for management of
		hazardous and other wastes.
		(1) For the Complied.
		management of
		hazardous and

other wastes, an occupier shall follow the following steps, namely:- • Prevention; • Minimization; • Reuse, • Recovery, utilization including coprocessing; • Safe disposal. We are using advanced technology and processes to minimization of waste generation for prevention, reuse, recycling and safe disposal to the authorized actual user TSDF /CHWIF facility.
(2) The occupier shall be responsible for safe and environmentally sound management of hazardous and other wastes. Complied. We are ensuring for safe and environmentally sound management of hazardous and other wastes.
(3) The hazardous and other wastes generated in the establishment of an occupier shall be sent or sold to an authorized actual user or shall be disposed of in an authorized disposal facility. Complied. We have our own captive TSDF and Incinerator facility.
(4) The hazardous and other wastes shall be transported from an occupier's establishment to an authorized actual user or to an authorized disposal facility in accordance with the provisions of these rules.

(5) The occupier	Complied.	
who intends to	\A/a ava laguina acasavata	
get its hazardous and	We are having separate hazardous waste storage	
other wastes	facility with all safety	
treated and	measures to avoid	
disposed of by	accident. Also we are	
the operator of a	adopting safe disposal and	
treatment,	storage practices.	
storage and	β ετσ. α.θε β. α.σσσο.	
disposal facility		
shall give to the		
operator of that		
facility, such		
specific		
information as		
may be needed		
for safe storage		
and disposal.	Constitut	_
(6) The occupier shall take all the	Complied	
steps while managing		
hazardous and		
other waste to-		
• contain		
contaminants		
and prevent		
accidents and		
limit their		
consequences		
on human		
beings and the		
environment;		
and Provide persons		
Provide persons working in the site with		
appropriate training,		
equipment and the		
information necessary		
to ensure their safety.		
(6) Grant of	Complied.	
authorization for		
managing hazardous	We are strictly agreeing,	
and other wastes.	complying & will continue	
	to comply with all the	
	stipulations made by	
	GPCB as per latest CC&A	
	no. AWH 105110 valid till	
	September 30, 2025.	

(7) Power to suspend or cancel an authorization. (8) Storage of hazardous and other wastes. (9) Utilization of hazardous and other wastes. (10) Standard Operating Procedure or guidelines for actual users. (11) Import and export (transboundary movement) of hazardous and other wastes. (12) Strategy for Import and export of hazardous and other wastes. (13) Procedure for import and export of hazardous and other wastes. (14) Procedure for Export of hazardous and other wastes. (15) Strategy for Import and export of hazardous and other wastes. (16) Treatment, storage and disposal facility for hazardous and other wastes from ladia. (15) Illegal traffic. (16) Treatment, storage and disposal facility for hazardous and other wastes. (17) Packaging and labelling – Form 8. (18) Transportation of hazardous waste transportation is being done through appropriate packing and albelling as per from—8. (18) Transportation of hazardous and other wastes transportation is being done through appropriate packing and labelling as per Form—8. (18) Transportation of hazardous waste transportation is being done through appropriate packing and labelling as per Form—8. (18) Transportation of hazardous waste transportation is being done through TREM Card as per Hazardous waste rules.		
(8) Storage of hazardous and other wastes. (9) Utilization of hazardous and other wastes. (10) Standard Operating Procedure or guidelines for actual users. (11) Import and export (transboundary movement) of hazardous and other wastes. (12) Strategy for Import and export of hazardous and other wastes. (13) Procedure for import of hazardous and other wastes. (14) Procedure for Export of hazardous and other wastes. (15) Illegal traffic. (16) Treatment, storage and disposal facility for hazardous and other wastes. (17) Packaging and labelling – Form 8. (18) Transportation of hazardous and other wastes. (18) Transportation of hazardous and other wastes. (18) Transportation of hazardous and labelling as per Form—8. (18) Transportation of hazardous and other wastes.		Not Applicable.
hazardous and other wastes. (9) Utilization of hazardous and other wastes. (10)Standard Operating Procedure or guidelines for actual users. (11) Import and export (transboundary movement) of hazardous and other wastes. (12) Strategy for Import and export of hazardous and other wastes. (13) Procedure for import of hazardous and other wastes. (14) Procedure for Export of hazardous and other wastes. (15) Ireatment, storage and disposal facility for hazardous and other wastes. (16) Treatment, storage and disposal facility for hazardous and other wastes. (17) Packaging and labelling – Form 8. (18) Transportation of hazardous and labelling as per Form-8. (18) Transportation of hazardous and labelling as per Form-8. (18) Transportation of hazardous and other wastes.		Complied
wastes. (9) Utilization of hazardous and other wastes. (10)Standard Operating Procedure or guidelines for actual users. (11) Import and export (transboundary movement) of hazardous and other wastes. (12) Strategy for Import and export of hazardous and other wastes. (13) Procedure for import of hazardous and other wastes. (14) Procedure for Export of hazardous and other wastes. (15) Illegal traffic. (16) Treatment, storage and disposal facility for hazardous and other wastes. (17) Packaging and labelling – Form 8. (18) Transportation of hazardous and other wastes. . ,	Complied.	
(9) Utilization of hazardous and other wastes. Recovered spent solvent are being reused. Used oil & discarded drums are being sent to authorize recycler. (10)Standard Operating Procedure or guidelines for actual users. (11) Import and export (transboundary movement) of hazardous and other wastes. (12) Strategy for Import and export of hazardous and other wastes. (13) Procedure for import of hazardous and other wastes. (14) Procedure for Export of hazardous and other wastes. (15) Illegal traffic. (16) Treatment, storage and disposal facility for hazardous and other wastes. (17) Packaging and labelling – Form 8. (18) Transportation of hazardous and labelling as per Form-8. (18) Transportation of hazardous and other wastes. (18) Transportation of hazardous and labelling as per Form-8. (18) Transportation of hazardous and other wastes. Waste is being transported through TREM Card as per		
hazardous and other wastes. (10)Standard Operating Procedure or guidelines for actual users. (11) Import and export (transboundary movement) of hazardous and other wastes. (12) Strategy for Import and export of hazardous and other wastes. (13) Procedure for import of hazardous and other wastes. (14) Procedure for Export of hazardous and other wastes from India. (15) Illegal traffic. (16) Treatment, storage and disposal facility for hazardous and other wastes. (17) Packaging and labelling – Form 8. (18) Transportation of hazardous and other wastes.		Complied.
wastes. Recovered spent solvent are being reused. Used oil & discarded drums are being sent to authorize recycler. (10)Standard Operating Procedure or guidelines for actual users. (11) Import and export (transboundary movement) of hazardous and other wastes. (12) Strategy for Import and export of hazardous and other wastes. (13) Procedure for import of hazardous and other wastes. (14) Procedure for Export of hazardous and other wastes from India. (15) Illegal traffic. (16) Treatment, storage and disposal facility for hazardous and other wastes. (17) Packaging and Iabelling – Form 8. (18) Transportation of hazardous and labelling as per Form-8. (18) Transportation of hazardous and other wastes. Waste is being transported through TREM Card as per Form-8.	` '	
are being reused. Used oil & discarded drums are being sent to authorize recycler. (10)Standard Operating Procedure or guidelines for actual users. (11) Import and export (transboundary movement) of hazardous and other wastes. (12) Strategy for Import and export of hazardous and other wastes. (13) Procedure for import of hazardous and other wastes. (14) Procedure for Export of hazardous and other wastes from India. (15) Illegal traffic. (16) Treatment, storage and disposal facility for hazardous and other wastes. (17) Packaging and labelling – Form 8. (18) Transportation of hazardous and other wastes.		Recovered spent solvent
sent to authorize recycler. (10)Standard Operating Procedure or guidelines for actual users. (11) Import and export (transboundary movement) of hazardous and other wastes. (12) Strategy for Import and export of hazardous and other wastes. (13) Procedure for import of hazardous and other wastes. (14) Procedure for Export of hazardous and other wastes. (15) Illegal traffic. (16) Treatment, storage and disposal facility for hazardous and other wastes. (17) Packaging and labelling – Form 8. (18) Transportation of hazardous and other wastes.		·
(10)Standard Operating Procedure or guidelines for actual users. (11) Import and export (transboundary movement) of hazardous and other wastes. (12) Strategy for Import and export of hazardous and other wastes. (13) Procedure for import of hazardous and other wastes. (14) Procedure for Export of hazardous and other wastes from India. (15) Illegal traffic. (16) Treatment, storage and disposal facility for hazardous and other wastes. (17) Packaging and Iabelling – Form 8. (18) Transportation of hazardous waste transportation is being done through appropriate packing and labelling as per Form-8. (18) Transportation of hazardous and other wastes. (18) Transportation of hazardous and other wastes. (18) Transportation of hazardous and other wastes.		discarded drums are being
Procedure or guidelines for actual users. (11) Import and export (transboundary movement) of hazardous and other wastes. (12) Strategy for Import and export of hazardous and other wastes. (13) Procedure for import of hazardous and other wastes. (14) Procedure for Export of hazardous and other wastes from India. (15) Illegal traffic. (16) Treatment, storage and disposal facility for hazardous and other wastes. (17) Packaging and labelling – Form 8. (18) Transportation of hazardous and labelling as per Form-8. (18) Transportation of hazardous and other wastes. (18) Transportation of hazardous and other wastes. (18) Transportation of hazardous and other wastes. (Vot Applicable. Not Applicable. Complied. Not Applicable. Complied. Not Applicable. Complied. All hazardous waste to authorized facility as per the valid authorization. Complied. All hazardous waste transportation is being done through appropriate packing and labelling as per Form-8. Complied. Waste is being transported through TREM Card as per		
for actual users. (11) Import and export (transboundary movement) of hazardous and other wastes. (12) Strategy for Import and export of hazardous and other wastes. (13) Procedure for import of hazardous and other wastes. (14) Procedure for Export of hazardous and other wastes from India. (15) Illegal traffic. (16) Treatment, storage and disposal facility for hazardous and other wastes. (17) Packaging and labelling – Form 8. (18) Transportation of hazardous and other wastes.		Noted.
(11) Import and export (transboundary movement) of hazardous and other wastes. (12) Strategy for Import and export of hazardous and other wastes. (13) Procedure for import of hazardous and other wastes. (14) Procedure for Export of hazardous and other wastes from India. (15) Illegal traffic. (16) Treatment, storage and disposal facility for hazardous and other wastes. (17) Packaging and labelling – Form 8. (18) Transportation of hazardous and other wastes.	S .	
(transboundary movement) of hazardous and other wastes. (12) Strategy for Import and export of hazardous and other wastes. (13) Procedure for import of hazardous and other wastes. (14) Procedure for Export of hazardous and other wastes from India. (15) Illegal traffic. (16) Treatment, storage and disposal facility for hazardous and other wastes. (17) Packaging and labelling – Form 8. (18) Transportation of hazardous waste transportation is being done through appropriate packing and labelling as per Form-8. (18) Transportation of hazardous and other wastes.		
movement) of hazardous and other wastes. (12) Strategy for Import and export of hazardous and other wastes. (13) Procedure for import of hazardous and other wastes. (14) Procedure for Export of hazardous and other wastes from India. (15) Illegal traffic. (16) Treatment, storage and disposal facility for hazardous and other wastes. (17) Packaging and Iabelling – Form 8. (18) Transportation of hazardous and other wastes. (18) Transportation of hazardous and other wastes being transported through TREM Card as per		Not Applicable.
hazardous and other wastes. (12) Strategy for Import and export of hazardous and other wastes. (13) Procedure for import of hazardous and other wastes. (14) Procedure for Export of hazardous and other wastes from India. (15) Illegal traffic. (16) Treatment, storage and disposal facility for hazardous and other wastes. (17) Packaging and labelling – Form 8. (18) Transportation of hazardous and other wastes. (19) Vot Applicable. Not Applicable. (20) Not Applicable. (20) We have our own captive TSDF and Incinerator. We also send waste to authorized facility as per the valid authorization. (37) Packaging and labelling as per Form 8. (48) Transportation of hazardous and other wastes. (49) Vaste is being transported through TREM Card as per	1 `	
wastes. (12) Strategy for Import and export of hazardous and other wastes. (13) Procedure for import of hazardous and other wastes. (14) Procedure for Export of hazardous and other wastes from India. (15) Illegal traffic. (16) Treatment, storage and disposal facility for hazardous and other wastes. (17) Packaging and labelling – Form 8. (18) Transportation of hazardous and other wastes.	,	
(12) Strategy for Import and export of hazardous and other wastes. (13) Procedure for import of hazardous and other wastes. (14) Procedure for Export of hazardous and other wastes from India. (15) Illegal traffic. (16) Treatment, storage and disposal facility for hazardous and other wastes. (17) Packaging and labelling – Form 8. (18) Transportation of hazardous and other wastes. (18) We have our own captive TSDF and Incinerator. We also send waste to authorized facility as per the valid authorization. (20) Complied. All hazardous waste transportation is being done through appropriate packing and labelling as per Form-8. (20) Complied. Waste is being transported through TREM Card as per		
and export of hazardous and other wastes. (13) Procedure for import of hazardous and other wastes. (14) Procedure for Export of hazardous and other wastes from India. (15) Illegal traffic. (16) Treatment, storage and disposal facility for hazardous and other wastes. (17) Packaging and Iabelling – Form 8. (18) Transportation of hazardous and other wastes.		Not Applicable
and other wastes. (13) Procedure for import of hazardous and other wastes. (14) Procedure for Export of hazardous and other wastes from India. (15) Illegal traffic. (16) Treatment, storage and disposal facility for hazardous and other wastes. (17) Packaging and Iabelling – Form 8. (18) Transportation of hazardous and other wastes. (18) Waste is being transported through TREM Card as per		NOT Applicable.
(13) Procedure for import of hazardous and other wastes. (14) Procedure for Export of hazardous and other wastes from India. (15) Illegal traffic. (16) Treatment, storage and disposal facility for hazardous and other wastes. (17) Packaging and Iabelling – Form 8. (18) Transportation of hazardous and other wastes. (18) Waste is being transported through TREM Card as per	•	
import of hazardous and other wastes. (14) Procedure for Export of hazardous and other wastes from India. (15) Illegal traffic. (16) Treatment, storage and disposal facility for hazardous and other wastes. (17) Packaging and Incinerator. We also send waste to authorized facility as per the valid authorization. (17) Packaging and Iabelling – Form 8. (18) Transportation of hazardous and other wastes. (18) Transportation of hazardous and other wastes. (18) Transportation of hazardous and other wastes. Waste is being transported through TREM Card as per		Not Applicable
and other wastes. (14) Procedure for Export of hazardous and other wastes from India. (15) Illegal traffic. (16) Treatment, storage and disposal facility for hazardous and other wastes. (17) Packaging and Iabelling – Form 8. (18) Transportation of hazardous and other wastes.	` '	Not Applicable.
(14) Procedure for Export of hazardous and other wastes from India. (15) Illegal traffic. (16) Treatment, storage and disposal facility for hazardous and other wastes. We have our own captive TSDF and Incinerator. We also send waste to authorized facility as per the valid authorization. (17) Packaging and labelling – Form 8. All hazardous waste transportation is being done through appropriate packing and labelling as per Form-8. (18) Transportation of hazardous and other wastes. Waste is being transported through TREM Card as per	1 .	
Export of hazardous and other wastes from India. (15) Illegal traffic. (16) Treatment, storage and disposal facility for hazardous and other wastes. (17) Packaging and labelling – Form 8. (18) Transportation of hazardous and other wastes. (18) Transportation of hazardous and other wastes. (18) Transportation of hazardous and other wastes. (18) We have our own captive TSDF and Incinerator. We also send waste to authorized facility as per the valid authorization. (17) Packaging and labelling as per Form 8. (18) Transportation of hazardous and other wastes. (18) Waste is being transported through TREM Card as per		Not Applicable
and other wastes from India. (15) Illegal traffic. (16) Treatment, storage and disposal facility for hazardous and other wastes. (17) Packaging and labelling – Form 8. (18) Transportation of hazardous and other wastes. (18) Waste is being transported through TREM Card as per	, ,	, tot, tppilodbio.
India. (15) Illegal traffic. (16) Treatment, storage and disposal facility for hazardous and other wastes. (17) Packaging and labelling – Form 8. (18) Transportation of hazardous and other wastes. (18) Transportation of hazardous and other wastes. (18) Transportation of hazardous and other wastes. (18) Wot Applicable. Complied. (19) Packaging and labelling as per the valid authorization. (19) Packaging and labelling as per Form 8. (19) Transportation of hazardous and other wastes. (19) Transportation of hazardous and other wastes. (18) Waste is being transported through TREM Card as per labeled.	· ·	
(15) Illegal traffic. (16) Treatment, storage and disposal facility for hazardous and other wastes. (17) Packaging and labelling – Form 8. (18) Transportation of hazardous and other wastes. (18) We have our own captive TSDF and Incinerator. We also send waste to authorized facility as per the valid authorization. (17) Packaging and labelling as per Form 8. (18) Transportation of hazardous and other wastes. (18) Waste is being transported through TREM Card as per		
(16) Treatment, storage and disposal facility for hazardous and other wastes. We have our own captive TSDF and Incinerator. We also send waste to authorized facility as per the valid authorization. (17) Packaging and labelling – Form 8. All hazardous waste transportation is being done through appropriate packing and labelling as per Form-8. (18) Transportation of hazardous and other wastes. Waste is being transported through TREM Card as per		Not Applicable.
hazardous and other wastes. We have our own captive TSDF and Incinerator. We also send waste to authorized facility as per the valid authorization. (17) Packaging and labelling – Form 8. All hazardous waste transportation is being done through appropriate packing and labelling as per Form-8. (18) Transportation of hazardous and other wastes. Waste is being transported through TREM Card as per	(16) Treatment, storage	
wastes. TSDF and Incinerator. We also send waste to authorized facility as per the valid authorization. (17) Packaging and labelling – Form 8. All hazardous waste transportation is being done through appropriate packing and labelling as per Form-8. (18) Transportation of hazardous and other wastes. Waste is being transported through TREM Card as per		
also send waste to authorized facility as per the valid authorization. (17) Packaging and labelling – Form 8. All hazardous waste transportation is being done through appropriate packing and labelling as per Form-8. (18) Transportation of hazardous and other wastes. Waste is being transported through TREM Card as per	hazardous and other	We have our own captive
authorized facility as per the valid authorization. (17) Packaging and labelling – Form 8. All hazardous waste transportation is being done through appropriate packing and labelling as per Form-8. (18) Transportation of hazardous and other wastes. Waste is being transported through TREM Card as per	wastes.	
the valid authorization. (17) Packaging and labelling – Form 8. All hazardous waste transportation is being done through appropriate packing and labelling as per Form-8. (18) Transportation of hazardous and other wastes. Waste is being transported through TREM Card as per		
(17) Packaging and labelling – Form 8. All hazardous waste transportation is being done through appropriate packing and labelling as per Form-8. (18) Transportation of hazardous and other wastes. Waste is being transported through TREM Card as per		· ' '
labelling – Form 8. All hazardous waste transportation is being done through appropriate packing and labelling as per Form-8. (18) Transportation of hazardous and other wastes. Waste is being transported through TREM Card as per	(17)	
All hazardous waste transportation is being done through appropriate packing and labelling as per Form-8. (18) Transportation of hazardous and other wastes. Complied. Waste is being transported through TREM Card as per	1	Complied.
transportation is being done through appropriate packing and labelling as per Form-8. (18) Transportation of hazardous and other wastes. Waste is being transported through TREM Card as per	labelling – Form 8.	
done through appropriate packing and labelling as per Form-8. (18) Transportation of hazardous and other wastes. Waste is being transported through TREM Card as per		
packing and labelling as per Form-8. (18) Transportation of hazardous and other wastes. Waste is being transported through TREM Card as per		
per Form-8. (18) Transportation of hazardous and other wastes. Waste is being transported through TREM Card as per		
(18) Transportation of hazardous and other wastes. Waste is being transported through TREM Card as per		
hazardous and other wastes. Waste is being transported through TREM Card as per	(18) Transportation of	<u> </u>
wastes. Waste is being transported through TREM Card as per		Complied.
through TREM Card as per		Waste is being transported
· · · · · · · · · · · · · · · · · · ·	wasies.	
Trazaradas wasterales.		
		azaradas waste raies.

(19) Manifest system (Movement Document for hazardous and other waste to be used with the country only.	er We are sending waste in through online manifest system of GPCB XGN.
(20) Records at returns.	We are maintaining & submitting all records like Form-3, Form-4 & environment statement Form-V periodically to GPCB.
	of Noted in le
(22) Accider reporting. Where a accident occurs at the facility of the occupies handling hazardou or other wastes an operator of the disposal facility of during transportation the occupier or the operator or the transporter show immediately intimated the State Pollution Control Board through telephone, e-modulate and subsequently send a report in Form 1. (23) Liability of occurs at the facility of occurs and subsequently send a report in Form 1.	No accidents were reported during report period during handling and transportation of hazardous or other wastes.
operator of a disposal	
(a) The occupie importer or exported and operator of the disposal facility shated be liable for a	r e II

damages caused to the	
environment or third	
party due to improper	
handling and	
management of the	
hazardous and other	
waste.	
(b) The occupier and the	Noted.
operator of the disposal	
facility shall be liable to	
pay financial penalties	
as levied for any	
violation of the	
provisions under these	
rules by the State	
Pollution Control Board	
with the prior approval	
of the Central Pollution	
Control Board.	
(24) Appeal	
(a) Any person	Noted & Complied
aggrieved by an order	
of suspension or	
cancellation or refusal	
of authorization or its	
renewal passed by the	
State Pollution Control	
Board may, within a	
period of thirty days	
from the date on which	
the order is	
communicated to him,	
prefer an appeal in	
Form 12 to the	
Appellate Authority,	
namely, the	
Environment of the	
Secretary of the	
State.	
(b) The Assallate	
(b) The Appellate	
Authority may	
entertain the appeal	
after expiry of the said	
period of thirty days, if	
it is satisfied that the	
appellant was	
prevented by sufficient	
cause from filing the	
appeal in time.	

	1			
xiii	Fly ash should be stored	(c) Every appeal filed under this rule shall be disposed of within a period of sixty days from the date of its filing. Complied.		
	separately as per CPCB guidelines so that it should not adversely affect the air quality, becoming air borne by wind or water regime during rainy season by flowing along with the storm water. Direct exposure of workers to fly ash & dust should be avoided.	We have not constructed ash pond for the CPP unit. We have closed three silo of 200 MT and Two silo of 300 MT capacity of each, total 1200 MT capacity, which is well enough for our average generation of approx. 300 TPD. We dispatch the fly ash daily from these silos so we have not prepare ash pond.		
xiv	The company shall undertake	waste minimization measures as below:-		
	(a) Metering and control of quantities of active ingredients to minimize waste.	Complied. Metering of water is done. Meter is provided at the inlet of the collection tank and reuse system of waste water and records are being maintained. Photograph of water meter shown below:		
		Control of the contro		
	(b) Reuse of by- products from the process as raw materials or as raw material substitutes in other processes.	Sodium Sulfate, sodium thio sulphate, brine, MEE salt, sodium hypochlorite, copper hydroxide, spent acid, etc. are few byproducts from the process which are being sold for using the same either as raw material or as substitute to raw materials. Also, fly ash and gypsum are being used as raw material for brick manufacturing. Sodium hypochlorite, sodium hydro sulfide, etc. are being used as raw material in other processes.		
	(c) Use of automated filling to minimize spillage.	Filling/transfer system is being provided to minimized the spillage i.e. Chain conveyor system provided.		
	(d) Use of Close Feed system into batch reactors.	"Close feed system" is available to our plant		

	(e) Venting equipment through vapour recovery system.	At all venting equipment condenser recovery system & scrubbers are provided.
	(f) Use of high pressure hoses for equipment clearing to reduce waste water generation.	We are using high pressure jet nozzle for equipment cleaning to minimize wastewater generation.
xv	The green beltof at least 5-10 m width shall be developed in nearly 33% of the total project area, mainly along the plant periphery, in downward wind direction, and along roadsides etc. Selection of plant species shall be as per the CPCB guidelines in consultation with the State Forest Department.	Complied. Proper plantation is done all around the plant boundary and also the roads to mitigate fugitive & transport dust emission. Total Industrial Plot area: 1126078.27 sq.mt Green belt area: 409030.00 sq.mt (approx. 36% of total plot area) Layout plan with green belt is shown as under:
xvi	All the commitments made regarding issues raised during the public hearing/consultation meeting shall be satisfactorily implemented.	Complied. Please refer below full compliance with this condition as under; 1. Local employment is going on and is above 80 % at present. 2. Coal handling guidelines are fully complied. Point wise detailed compliance report was submitted wide our letter dated March 23, 2020.
xvii	As committed, funds allocation for the Corporate Environment Responsibility (CER) shall be 2% of the total project cost. Item- wise details along with time bound action plan shall be prepared	Complied. Details of CER CSR is given in Annexure 7.

	Land a basinal to the						
	and submitted to the Ministry's Regional Office.						
xviii	For the DG sets, emission limits and the stack height shall be in conformity with the extant regulations and the CPCB guidelines. Acoustic enclosure shall be provided to DG set for controlling the noise pollution.	Complied. We ensured that at no time the emission level go beyond the stipulated standards prescribed limits. In such cases occurrences we will intimate to board & authority time to time. Adequate stack height and acoustic enclosures are provided on DG sets. Stack details:					
	poliution.	Sr Stack Stack Parameter Permissible APCD Fuel No. Details Ht mtr Limits					
		1 DG Set H: 10 PM 150 Adequate Diesel 1010KVA Mg/Nm3 Stack Ht & SO2 100 ppm Acoustic by) NOx 50 ppm Enclosure					
		2 DG Set H: 11 PM 150 Adequate Diesel 1500KVA Mg/Nm3 Stack Ht & SO2 100 ppm Acoustic By) NOx 50 ppm Enclosure					
		Photograph of Stack & Stack Attached to D.G Sets: When the stack is a stack of the property of the stack of the stack is a stack of the property of the stack of					
xix	The unit shall make the arrangement for Protection of possible fire hazards during manufacturing process in material handling. Fire-fighting system shall be as per the norms.	Complied. A well designed Fire hydrant system is adequate and as per standards. Fire hydrant Network details:					

- SCBA sets 35nos.
- Emergency alarm system 532 nos. points spread across the company.
- Fire station manned round the clock with Siren and Annunciation System.
- Regular Testing on every Monday.
- Smoke detectors in the office and labs.
- Auto water deluging system at critical reactors.
- Auto water sprinkler system at tank farms.

Surveillance of the workers shall be done on a regular basis and records maintained as per the Factories Act.

Complied.

Being done on regular basis as per the Factories Act & rules.

Occupational health surveillance of the workers is carried out on a regular basis as per section-41 C of the factories act and ruke-68T of Gujarat Factories Rules and records are maintained. Regular medical check-up of all employees are done by in-house doctors.

The following medical check-up has been carried out during report period:

Medical Check-Up:

Sr No.	Employee	Nos. during report period
1	Staff	
2	Operators	1819
3	Workers	

Various types of tests being performed are as below;

- 1. Pre-employment check-up:
- 1. Vision
- 2. Colour blindness
- 3. CBC
- 4. Urine
- 5. Height
- 6. Weight
- 7. B/P
- 8. Pulse
- 9. Habit
- 10. Personal History
- 11. Family History
- 12. Identification k

2. Annual Check-up:

- 1. Physical check-up
- 2. Vision
- 3. Blood
- 4. Urine
- 5. PFT
- 6. ECG

Our occupational health centre & Pathology Lab is equipped with necessary facilities under supervision of factory medical officer with trained three EHS persons.

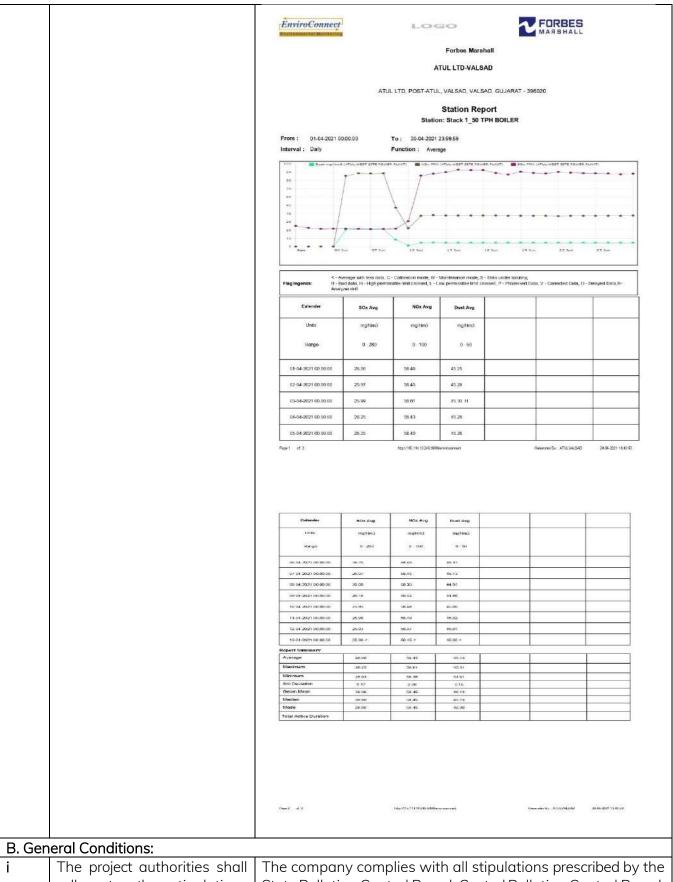
Medical Facilities:

- ☐ First Aid boxes in all plants
- □ Central Ambulance Room in the middle of the factory
- □ Two Ambulance Vans. Out of which one is equipped with ICU facilities.
- Medical Center
- □ Three full time AFIH certified doctors.
- □ Equipped with 3Beds
- □ Full equipped Pathological lab with advanced diagnostic equipment
- ECG Equipment
- Cardiac monitor
- Defibrillator
- □ Finger pulse Oxy meter
- Pulmonary Function Test Apparatus
- 02Administration
- Antidotes with routine Important and Vital lifesaving Drugs

□ Tie-up with Kasturba Hospital, Valsad, and Pardi Hospital, Pardi, respectively 7 kms and 3 kms away from Atul.

We also have tie up with external two hospitals (Pardi Hospital and Kasturba Hospital). We have medical check-up schedule once in quarter for Insecticide plant's employees Other necessary items including First-aid medicines, antidotes and equipment as prescribed in the schedule the under Rule-68 U (b) of the Gujarat factories rules are also been provided.

Remark: All employ found medically fit to work, no contiguous diseases were observed.


xxi C

Continuous online (24x7)monitoring system for stack emissions shall be installed for measurement of flue gas discharge and the pollutants concentration, and the data to be transmitted to the CPCB and SPCB server. For online continuous monitoring of effluent, the unit shall install web camera with night vision capability and flow meters in the channel /drain carrying effluent within the premises.

Complied.

Online monitoring system for SPM, SOx and NOx is already been made and connected to CPCB server.

Photograph of online monitoring system (CEMS) connected to the CPCB server:

The project authorities shall adhere to the stipulations made by the State Pollution Control Board, Central

The company complies with all stipulations prescribed by the State Pollution Control Board, Central Pollution Control Board, State Government and any other statutory authority.

	Pollution Control Board, State Government and any other statutory authority.	Our compliance are further monitored by our Environmental auditors appointed by GPCB. Latest Environmental audit report by S.N.Patel Institute of Technology & research Centre for Environment research, Bardoli, Surat for year 2020-21 was submitted vide our letter dated June 26, 2021.
ii	No further expansion or modifications in the plant shall be carried out without prior approval of the Ministry of Environment, Forest and Climate Change. In case of deviations or alterations in the project proposal from those submitted to this Ministry for clearance, a fresh reference shall be made to the Ministry to assess the adequacy of conditions imposed and to add additional environmental protection measures required, if any.	Complied. We ensure that there is no further expansion or modifications related to EC in the plant. For any deviations or alteration in the plant we will opt prior permission from MoEF.
iii	The locations of ambient air quality monitoring stations shall be decided in Consultation with the State Pollution Control Board (SPCB) and it shall be ensured that at least one station each is installed in the upwind and downwind direction as well as where maximum ground level concentrations are anticipated.	Complied. The Location of ambient air quality monitoring stations had been decided in consultation with GPCB so that at least one station is installed in the up wind and downwind direction as well as where maximum ground level concentration are anticipated. This also covers the impact, if any, of the project plant. The same had been shown to authority like SPCB, CPCB & MoEF during their visit to our factory. The maximum values during the compliance period confirm that at no time the emission level went beyond the stipulated standards. Parameter wise summary is given above in Specific Condition IV.
iv	The National Ambient Air Quality Emission Standards issued by the Ministry vide G.S.R. No. 826(E) dated 16 November, 2009 shall be followed.	
V	The overall noise levels in and around the plant area shall be kept well within the standards by providing noise control measures including acoustic hoods, silencers, enclosures etc. on all sources	Complied. The ambient and workplace noise level confirms to the standard prescribed under EPA. The same is being regularly monitored at regular interval for ensuring the compliance.

of noise generation. The ambient noise levels shall conform to the standards prescribed under Environment (Protection) Act, 1986 Rules,1989 viz. 75 dBA (day time) and 70 dBA (night time).

The maximum values during the compliance period confirm that at no time the emission level went beyond the stipulated standards. Parameter wise summary is given below:

Noise level monitoring data (Day Time)

Sr No.	Location		Values for the period April 21 – September 21		
			Min.	Max.	Avg.
1	66KVA substation	75	62.60	66.00	64.47
2	Opposite shed D	75	65.20	72.30	69.07
3	ETP West site	75	64.10	68.40	66.58
4	ETP North site	75	61.30	65.20	63.27
5	Near TSDF	75	63.20	69.20	66.25
6	Near Main guest house	75	61.40	65.40	63.68
7	At Wyeth Colony	75	57.80	67.30	61.43
8	Gram Panchayat Hall	75	64.20	68.30	65.98
9	Near Main Office North site	75	62.40	66.30	64.23
10	Haria Water tank	75	62.80	67.80	65.12

Noise level monitoring data (Night Time):

Sr No.	Location	Permissible Limits, dB	Values for the period April 21 – September 21		
			Min.	Max.	Avg.
1	66KVA substation	70	51.60	55.70	53.30
2	Opposite shed D	70	50.60	54.80	52.18
3	ETP West site	70	52.50	55.30	53.67
4	ETP North site	70	50.70	58.10	52.85
5	Near TSDF	70	51.30	57.60	55.77
h	Near Main guest house	70	50.80	54.20	52.58
7	At Wyeth Colony	70	50.20	52.60	51.63
8	Gram Panchayat Hall	70	53.40	56.40	54.82
Ч	Near Main Office North site	70	52.40	54.30	53.27

		10 Haria Water tank 70 50.20 57.30 54.08
vi	The company shall harvest rainwater from the roof tops of the Buildings and Storm water Drains to Recharge the ground water and to utilize the same for process requirements.	Complied. Rooftop rain water from Coal sheds and New TG building is collected in well-constructed pond and used as make up water for cooling tower.

vii Training shall be imparted to all employees on safety and health aspects of chemicals handling. Pre- employment and routine periodical medical examinations for all employees shall be undertaken on regular basis. Training to all employees on handling of chemicals shall be imparted.

Complied.

Annual training plan are being carried out every calendar year from January to December for safety purpose.

Company is providing training which cover all relevant workplace policies, procedures and practices to ensure that staff have the appropriate skills and knowledge to perform their work safety and according to the legislative requirements and the departments and work place procedures.

All employees and others have a duty to comply with instructions given for workplace health and safety.

Employee training which generally include:

- First aid training
- Firefighting training Use of Fire Hydrant /Extinguisher
- Handling of Compressed Gas Cylinder
- Work Permit System, Use of Spill Kit
- Handling of Solvents
- Operation of ETP &MEE
- Handling of Hazardous waste
- Handling of Biomedical waste
- Scrap yard management
- 111 A training as per factory Act
- General instruction training; e.g. workplace communication processes, incident reporting, lock down, evacuation and medical emergency procedures, mock drill.
- Job-specific training e.g. safe work procedures for the use of equipment, SOP of manufacturing process & safety and health aspect of chemical handling.
- Conducted OSHAS & EMS Programme.
- Hygiene, Stress management & skill development.

viii The shall also company all the comply with environmental protection measures and safeguards proposed in the documents submitted to the Ministry. All the recommendations made in the EIA/EMP in respect of environmental management, and mitigation measures relating to the project shall be implemented.

Complied.

Compliance to all environmental protection measures and safeguards proposed in the project report submitted to ministry is compiled as mention in **Annexure 9**

ix	The company shall undertake all the relevant measures for improving the socio economic conditions of the surrounding area. CER activities shall be undertaken by involving local villages and administration.	Complied. Details of CER CSR is given in Annexure 7.
X	The company shall undertake eco- developmental measures including community welfare measures in the project area for the Overall improvement of the environment.	Complied. Details of CER CSR is given general condition (ix)
xi	A separate Environmental Management Cell equipped with full-fledged laboratory facilities shall be set up to carry out the Environmental management and monitoring functions.	Complied. Company is having separate Environmental Management Cell equipped with full-fledged laboratory facility to carry out the environment management and monitoring functions. Apart from this, one Environment Research Lab is also established for research work for the study of various aspects related to environment and its remedial measures. Company has developed a separate laboratory equipped with equipment such as pH meter, TDS meter, COD meter, Glass ware, gas chromatography system, and oven, muffle furnace, etc. to carry out testing of routine parameters. Currently the parameters measured in-house are pH, COD, TDS, MLVSS, and MLSS.A For all external environmental monitoring we have appointed NABL approved reputed agencies. Organogram of SHE Department

χij The Complied. company shall EMP measures are implemented. mark sufficient funds towards capital cost and **Recurring cost:** A separate budget is being allocated every year to comply with all the legal requirement stipulated by recurring cost per annum to SPCB, CPCB & MoEF apart from upkeep of pollution control implement the conditions systems and facilities. Total expenditure for the report period stipulated by the Ministry of Environment, Forest and is given in below table. Climate Change as well as the State Government Recurring Cost along with (Rs. in lakhs) the Sr No. Parameter implementation schedule April 21 – September 21 all the conditions for stipulated herein. The funds Air Pollution Control 2780 so earmarked for 2 Liquid Pollution Control environment management/ Environmental pollution control measures 3 Monitoring and 22 shall not be diverted for any Management other purpose. 87 Solid waste Disposal 5 26 Occupational health 6 Green belt 2922 Total xiii A copy of the clearance Complied. letter shall be sent by the We have informed the public that the project has been accorded environmental clearance by the EAC, MoEF&CC project proponent concerned Panchayat Zilla Delhi and that the copies of the clearance letter are available Parishad/Municipal with the GPCB and also be seen at website of EAC/GPCB. corporation, Urban local Body and the local NGO, if whom any, from suggestions/ representations, any, were received while processing the proposal. xiv The Complied. project proponent shall also submit six monthly We regularly submit the half-yearly compliance report & reports on the status of same is being updated on website. compliance of the stipulated Environmental Clearance conditions including results of monitored data (both in hard copies as well as by e- mail) to the respective Regional Office of MoEF&CC. the respective Zonal Office of

CPCB and SPCB. A copy of

	EC and six monthly compliance status report shall be posted on the website of the company.	
xv	The environmental statement for each financial year ending 31st ch in Form-V as is mandated shall be submitted to the concerned State Pollution Control Board as prescribed under the Environment (Protection) Rules, 1986, as amended. Subsequently, shall also be put on the website of the company along with the status of compliance of environmental clearance conditions and shall also be sent to the respective Regional Offices of MoEF&CC by e- mail.	Complied. The Env. Statement (Form-V) for each financial year ending 31st March is being submitted to State Pollution Control Board (GPCB) every year time to time on XGN portal as well as hard copy submission. Form V for year 2020-21 is attached as Annexure 8
xvi	The project proponent	Complied. We have been granted EC Dated: February 11, 2019 and inform the public that the project has been accorded environmental clearance and advertised in local newspapers that are widely circulated in the region with vernacular language Gujarati and another in English on February 17, 2019. Details submitted vide our letter Atul/SHE/EC Compliance/01 dated December 19, 2019.

	copy of the same shall be forwarded to the concerned Regional Office of the Ministry.	
xvii	The project authorities shall inform the Regional Office as well as the Ministry, the Date of financial closure and final approval of the project by the concerned authorities and the date of start of the project.	towards the status of work and financial closure time to time. We have also submitted six monthly EC compliance report periodically in which said information were updated time to

Annexure 1: Quality of Treated Effluent

Sr No.	Parameter	Results	Results							
		April 21	May 21	June 21	July 21	August 21	September 21	Limits		
1	рН	7.18	7.36	7.67	7.71	7.08	7.58	5.5 to 9.0		
2	Temperature °C	30.2	30.4	30.2	30.7	30.1	30	40 °C		
3	Colour (pt. co. scale)	40	50	40	70	60	50			
4	Suspended solids, mg/l	47	53	39	48	35	42	100		
5	Phenolic Compounds, mg/l	1.8	0.16	0.19	0.34	0.58	0.65	5		
6	Cyanides, mg/l	ND	ND	ND	ND	ND	ND	0.2		
7	Fluorides, mg/l	0.48	0.75	0.93	0.86	0.78	0.84	2		
8	Sulphides, mg/l	ND	0.62	1.24	1.65	1.18	0.98	2		
9	Ammonical Nitrogen, mg/l	5.7	4.8	2.76	6.4	4.6	5.9	50		
10	Total Chromium, mg/l	ND	ND	ND	ND	ND	ND	2		
11	Hexavelent Chromium, mg/l	ND	ND	ND	ND	ND	ND	1		
12	BOD (3 days at 27°C), mg/l	64	45	48	44	52	42	100		
13	COD, mg/l	216	186	194	210	234	196	250		
	Note: ND is Not I	Detected		1	I .	l	l			

Annexure 2: Ambient Air Quality Monitoring Results

PM 2.5 PM10 SO2 NO2 Ammonia HCI PM 2.5 PM10 SO2 NO2 Ammonia HCI PM 2.5 PM10 SO2 Ammonia HCI PM 2.5	400 200 60 100 80 80 400 200	22 45 12.4 9.6 ND 8 32.7 50.1 18.5 10.1	24 47 13.5 10.8 ND ND 32.4 50.5 16.9	22 45 14.6 11.7 ND 7 33.5 51.6	21 47 10.9 13.4 ND 7.4 31.8 50.1	24 43 12.2 14.3 ND 7 29.3	20 35 14.3 12 ND 6.7 25.6
NO2 Ammonia HCI PM 2.5 PM10 SO2 NO2 Ammonia HCI PM 2.5	80 80 400 200 60 100 80 80 400 200	12.4 9.6 ND 8 32.7 50.1 18.5 10.1	13.5 10.8 ND ND 32.4 50.5 16.9	14.6 11.7 ND 7 33.5	10.9 13.4 ND 7.4 31.8	12.2 14.3 ND 7 29.3	14.3 12 ND 6.7
NO2 Ammonia HCI PM 2.5 PM10 SO2 NO2 Ammonia HCI PM 2.5 PM10	80 400 200 60 100 80 400 200	9.6 ND 8 32.7 50.1 18.5 10.1	10.8 ND ND 32.4 50.5 16.9	11.7 ND 7 33.5	13.4 ND 7.4 31.8	14.3 ND 7 29.3	12 ND 6.7
Ammonia HCI PM 2.5 PM10 SO2 NO2 Ammonia HCI PM 2.5 PM10	400 200 60 100 80 80 400 200	ND 8 32.7 50.1 18.5 10.1	ND ND 32.4 50.5 16.9	ND 7 33.5	ND 7.4 31.8	ND 7 29.3	ND 6.7
HCI PM 2.5 PM10 SO2 NO2 Ammonia HCI PM 2.5 PM10	200 60 100 80 80 400 200	8 32.7 50.1 18.5 10.1	ND 32.4 50.5 16.9	7 33.5	7.4 31.8	7 29.3	6.7
PM 2.5 PM10 SO2 NO2 Ammonia HCI PM 2.5	60 100 80 80 400 200	32.7 50.1 18.5 10.1	32.4 50.5 16.9	33.5	31.8	29.3	
PM10 SO2 NO2 Ammonia HCI PM 2.5	100 80 80 400 200	50.1 18.5 10.1	50.5 16.9				25.6
SO2 NO2 Ammonia HCI PM 2.5 PM10	80 80 400 200	18.5 10.1	16.9	51.6	50.1	FC 4	
NO2 Ammonia HCI PM 2.5 PM10	80 400 200	10.1				50.1	44.6
Ammonia HCI PM 2.5 PM10	400 200		44 -	15.7	13.1	11.6	13.9
HCI PM 2.5 PM10	200	ND	11.5	12.6	14.3	13.9	15
PM 2.5 PM10		שאון	ND	ND	ND	ND	ND
PM10		ND	ND	ND	ND	ND	ND
	60	26	28	26	25	20	21
SO2	100	44	46	44	43	49	34
JU	80	13.2	12.8	13.7	11.7	13.6	13.1
NO2	80	10.3	11.6	10.9	14.2	12.4	13.4
Ammonia	400	ND	ND	ND	ND	ND	ND
HCI							ND
PM 2.5							19
PM10	100		45			46	40
SO2			10.6			14.1	12.7
NO2							11.3
Ammonia							5.9
HCI							ND
PM 2.5							24
PM10							43
SO2							11.6
NO2							12.5
Ammonia				7			4.7
HCI				ND	ND	ND	ND
PM 2.5					19.7	21.6	26.6
PM10							42.4
SO2							13
NO2							10.3
	<u> </u>						ND
HCI							ND
PM 2.5							23
PM10							45
SO2							11.1
NO2							10.7
	<u> </u>						ND
F F S N A A F F S N A A A A A A A A A	PM 2.5 PM10 SO2 NO2 Ammonia HCI PM 2.5 PM10 SO2 NO2 Ammonia HCI PM 2.5 PM10 SO2 NO2 Ammonia HCI PM 2.5 PM10 SO2 NO2 Ammonia	PM 2.5 60 PM 10 100 PM 2.5 80 PM 2.5 80 PM 2.5 60 PM 2.5 60 PM 2.5 80 PM 2.5 80 PM 2.5 60 PM 2.5 80	PM 2.5 60 21 PM 10 100 43 PM 2.5 80 9.5 PM 2.5 80 10.2 PM 2.5 80 ND PM 2.5 60 23 PM 10 100 47 PM 2.5 80 11.2 PM 2.5 80 11.2 PM 2.5 80 11.4 PM 2.5 60 25.3 PM 10 100 45.3 PM 10 100 45.3 PM 10 100 45.3 PM 10 100 100 100 PM 2.5 60 25.3 PM 10 100 100 100 PM 2.5 80 11.3 PM 2.5 80 12.4	PM 2.5 60 21 23 PM 10 100 43 45 PM 2.5 80 9.5 10.6 NO2 80 10.2 11.3 Ammonia 400 12 ND ND ND ND ND PM 2.5 60 23 25 PM 10 100 47 49 SO2 80 11.2 13.1 NO2 80 11.4 12.5 Ammonia 400 6 ND PM 2.5 60 25.3 26.2 PM 10 100 45.3 46.2 SO2 80 14.3 15.2 NO2 80 21.5 22.4 Ammonia 400 ND ND ND ND ND ND PM 2.5 60 27 29 PM 10 100 50 52 PM 10 100 50 52 RO2 80 11.2 13.6 NO2 <td>PM 2.5 60 21 23 21 PM 10 100 43 45 43 SO2 80 9.5 10.6 11.5 NO2 80 10.2 11.3 12.5 Ammonia 400 12 ND 10 HCI 200 ND ND ND PM 2.5 60 23 25 28 PM 10 100 47 49 47 SO2 80 11.2 13.1 12.3 NO2 80 11.4 12.5 13.8 Ammonia 400 6 ND ND PM 2.5 60 25.3 26.2 24.2 PM 10 100 45.3 46.2 48.3 SO2 80 14.3 15.2 14.1 NO2 80 21.5 22.4 20.5 Ammonia 400 ND ND ND ND ND ND ND ND ND ND ND ND</td> <td>PM 2.5 60 21 23 21 26 PM 10 100 43 45 43 42 PM 2.5 80 9.5 10.6 11.5 12.1 NO2 80 10.2 11.3 12.5 11.9 Ammonia 400 12 ND 10 8.5 HCI 200 ND ND ND ND PM 2.5 60 23 25 28 24 PM 10 100 47 49 47 45 PM 2.5 60 23 13.1 12.3 13.8 NO2 80 11.2 13.1 12.3 13.8 NO2 80 11.4 12.5 13.8 12.7 PM 2.5 60 25.3 26.2 24.2 19.7 PM 10 100 45.3 46.2 48.3 41.8 PM 2.5 60 25.3 26.2 24.2 19.7 PM 10 100 45.3 46.2 48.3 41.8</td> <td>PM 2.5 60 21 23 21 26 29 PM 10 100 43 45 43 42 46 FOO2 80 9.5 10.6 11.5 12.1 14.1 MO2 80 10.2 11.3 12.5 11.9 13.5 Ammonia 400 12 ND 10 8.5 7.6 HCI 200 ND ND ND ND ND ND PM 2.5 60 23 25 28 24 21 21 PM 10 100 47 49 47 45 41 41 45 41 45 41 45 41 45 41 45 41 45 41 45 41 45 41 45 41 45 41 45 41 45 41 45 41 45 41 45 41 46 46 47 45 41 46 48 42 46 48 48 42 46 <t< td=""></t<></td>	PM 2.5 60 21 23 21 PM 10 100 43 45 43 SO2 80 9.5 10.6 11.5 NO2 80 10.2 11.3 12.5 Ammonia 400 12 ND 10 HCI 200 ND ND ND PM 2.5 60 23 25 28 PM 10 100 47 49 47 SO2 80 11.2 13.1 12.3 NO2 80 11.4 12.5 13.8 Ammonia 400 6 ND ND PM 2.5 60 25.3 26.2 24.2 PM 10 100 45.3 46.2 48.3 SO2 80 14.3 15.2 14.1 NO2 80 21.5 22.4 20.5 Ammonia 400 ND ND ND ND ND ND ND ND ND ND ND ND	PM 2.5 60 21 23 21 26 PM 10 100 43 45 43 42 PM 2.5 80 9.5 10.6 11.5 12.1 NO2 80 10.2 11.3 12.5 11.9 Ammonia 400 12 ND 10 8.5 HCI 200 ND ND ND ND PM 2.5 60 23 25 28 24 PM 10 100 47 49 47 45 PM 2.5 60 23 13.1 12.3 13.8 NO2 80 11.2 13.1 12.3 13.8 NO2 80 11.4 12.5 13.8 12.7 PM 2.5 60 25.3 26.2 24.2 19.7 PM 10 100 45.3 46.2 48.3 41.8 PM 2.5 60 25.3 26.2 24.2 19.7 PM 10 100 45.3 46.2 48.3 41.8	PM 2.5 60 21 23 21 26 29 PM 10 100 43 45 43 42 46 FOO2 80 9.5 10.6 11.5 12.1 14.1 MO2 80 10.2 11.3 12.5 11.9 13.5 Ammonia 400 12 ND 10 8.5 7.6 HCI 200 ND ND ND ND ND ND PM 2.5 60 23 25 28 24 21 21 PM 10 100 47 49 47 45 41 41 45 41 45 41 45 41 45 41 45 41 45 41 45 41 45 41 45 41 45 41 45 41 45 41 45 41 45 41 45 41 46 46 47 45 41 46 48 42 46 48 48 42 46 <t< td=""></t<>

	HCI	200	ND	ND	ND	ND	ND	ND
Gram	PM 2.5	60	32.7	30.6	31.5	30.4	31.1	35.4
panchayat hall	PM10	100	50.1	50.8	51.7	50.3	46.2	41.9
	SO2	80	16.2	14.5	15.4	13.2	12.4	15
	NO2	80	22.2	22.6	21.5	22.9	17.3	14.8
	Ammonia	400	ND	ND	ND	ND	ND	ND
	HCI	200	ND	ND	ND	ND	ND	ND
Main office,	PM 2.5	60	38.3	39.2	34.6	37.2	33.6	39.5
North site	PM10	100	52.8	53.7	47.1	46.8	49.2	54.3
	SO2	80	11.3	12.2	10.7	11.6	12.4	13.4
	NO2	80	21.3	22.4	12.4	14.6	13.4	15.4
	Ammonia	400	ND	ND	ND	ND	ND	ND
	HCI	200	ND	ND	ND	ND	ND	ND
Haria water	PM 2.5	60	26.5	27.4	29	31.1	30.5	35.5
tank	PM10	100	53.7	54.6	56.4	51.3	46.2	51.8
	SO2	80	11.6	16.8	10.8	12.6	12.3	14.2
	NO2	80	16.5	17.4	10.5	13.2	11.4	13.5
	Ammonia	400	ND	ND	ND	ND	ND	ND
	HCI	200	ND	ND	ND	ND	ND	ND

Annexure 3: Stack Details

2				APR 2021	MAY. 2021	JUN. 2021	JULY. 2021	AUG. 2021	SEPT. 2021
Details of	Process and Flue stack				1				
Sr. No.	Stack Details	Paramente	Permissible	Obtained Value	Obtained Value	Obtained Value	Obtained	Obtained	Obtained
		T	Limits				Value	Value	Value
								- 50 FOATH (
Atul East	Site			in the					
1	furnace (Phosgene Plant)	PM	150.0 mg/Nm3	36.7	49.8	41.7	34.9	30.2	36.3
		со	_	ND	ND	ND	ND	ND	ND
2	Reactor (Phosgene plant-New)	Phosgene	0.1 ppm	ND	ND	ND	ND	ND	ND
Caustic C	hlorine Plant								
3	Dechlorination Plant	CI ₂	9.0 mg/Nm3	8	6	4.4	4.6	6.2	6.2
		HCI	20.0 mg/Nm3	7.8	5.73	4.45	4.72	6.4	6.35
4	Common stack of HCI Sigri unit 1&2	Cl ₂	9.0 mg/Nm3	3.35	3.8	6.2	7.1	6.27	4.1
	= 500	HCI	20.0 mg/Nm3	3.2	3.93	6.38	7.29	6.1	4.22
FCB Paint									
5	Foul Gas Scubber	SO ₂	40.0 mg/Nm3		***		• • *** • **********	************	
		NOx	25.0 mg/Nm3	Not in use	Not in use	Not in use	Not in use	Not in use	Not in use
Sulfuric A	cid (East Site)								
6	Sulfuric Acid Plant	SO ₂	2.0 kg/T	1.48	1.25	0.75	0.75	0.52	1.1
		Acid Mist	50.0 mg/Nm3	15.2	22.4	19.1	19.1	9.4	24.6
7	ChloroSulfonic Acid plant reactor	CI ₂	9.0 mg/Nm3	7.8	Not Running	5.5	4.5	7.1	3.8
		HCI	20.0 mg/Nm3	7.95		5.65	4.62	7.3	3.9
Resorcino	l Pinat								
8	Spray Dryer (Resorcinal Plant)	PM	150.0 mg/Nm3	21.2	10.4	18.9	15.7	19.2	24.6
9	Scubber vent (Resorcinal Plant)	SO ₂	40.0 mg/Nm3	Not Running	30.8	Not running	31.3	32.6	29.3
Incinerato	or								
10	Incinerator	PM	150.0 mg/Nm3	64.8	43.7	Not running	Not running	Not running	Not running
		SO ₂	40.0 mg/Nm3	17.2	20.6				
		NOx	25.0 mg/Nm3	14	19.4				
Ni Plant								•	
11	Foul Gas Scubber	SO ₂	40.0 mg/Nm3	32.4	13.7	31.7	18.4	30.2	25.8
		NOx	25.0 mg/Nm3	19.6	12.4	19.8	14.9	17.1	11.6
2-4-D Pla	nt				***			**	
12	Common Scrubber; 2,4D Plant	Cl ₂	9.0 mg/Nm3	7.2	7.1	3.4	6.2	5.5	5.9
		HCI	20.0 mg/Nm3	7.4	7.35	3.55	6.37	5.65	6.06
		Phenol		6.8	6.3	ND	ND	ND	ND
13	Dryer-1	PM with Pesticide compound	20.0 mg/Nm3	10.3	9.6	10.4	Not Running	Not Running	Not Running
14	Dryer-2	PM with Pesticide compound	20.0 mg/Nm3	Not Running	Not Running	Not Running	Not Running	Not Running	Not Running
15	Dryer-3	PM with Pesticide compound	20.0 mg/Nm3	Not Running	Not Running	Not Running	8.8	Not Running	Not Running

recon									
16	Dryer-4	PM with Pesticide compound	20.0 mg/Nm3	Not Running	Not Running	Not Running	Not Running	Not Running	Not Running
17	Dryer-5	PM with Pesticide compound	20.0 mg/Nm3	Not Running	Not Running	Not Running	10.9	12.6	15.6
NBD Plant .		-			1				
18	Spray Dryer	PM	150.0 mg/Nm3	Not in use	Not in use	Not in use	Not in use	Not in use	Not in use
19	Scrubber 5-902	Phosgene	0.1 ppm	ND	ND	ND	ND	ND	ND
		HCI	20 mg/Nm3	11.9	13.8	14.9	12.1	9.4	10.1
20	Scrubber S-801/802	NOx	25.0 mg/Nm3	7.5	16.7	12.6	17.4	21.6	18.4
CP Plant									
21	MCPA	Cl ₂	9 mg/NM ³	Not Running	Not Running	Not Running	Not Running	Not Running	Not Running
		HCI	20 mg/NM ³	1	-				
		SO ₂	40 mg/NM ³	1					
22	Fipronil	SO ₂	40 mg/NM ³	Not Running	Not Running	Not Running	Not Running	Not Running	Not Running
		HCI	20 mg/Nm3				81		
23	lmidacloprid	NH ₃	175 mg/Nm3	Not Running	Not Running	Not Running	Not Running	Not Running	Not Running
24	Pyrathroids	502	40 mg/Nm3	Not Running	Not Running	Not Running	Not Running	Not Running	Not Running
		HCI	20 mg/Nm3	1					
25	Stack at Amine Plant	NH ₃	175 mg/Nm3	145	130	115	145	102	128
MPSL Plant					1				501030
26	Phosgene Scrubbr at MPSL	Phosgene	0.1 ppm	ND	ND	ND	ND	ND	ND
27	Central Scrubber at MPSL	Phosgene	0.1 ppm	ND	ND	ND	ND	ND	ND
NICO plant									30350
28	Central scrubber at Nico Plant	Acetonytryl e, IPA	-	Not Running	Not Running	Not Running	Not Running	Not Running	Not Running
Ester Plant					Maria de la companya della companya				
29	Scrubber at Ester plant for Glyphosate	Formaldehy de	10 mg/Nm3	Not Running	Not Running	Not Running	Not Running	Not Running	Not Running
30	Central Scrubber MCPA Plant	HCI	20 mg/Nm3	Not Running	Not Running	Not Running	Not Running	Not Running	Not Running
31	MPP plant scrubber	HCI	20 mg/Nm3	8.1	Not Running	Not Running	Not Running	Not Running	Not Running
		Phosgene	0.1 ppm	ND					
Atul West S					-				
32	Shed A05/03/44	Cl ₂	9 mg/NM ³	7.75	5.35	6.2	7.3	4.6	8.1
		HCI	20 mg/NM ³	7.9	5.2	6.37	7.5	4.8	8.3
33	Shed B2/12/24 Reaction Vessel	Cl ₂	9.0 mg/Nm3	6.4	7.9	7.1	6.3	5.1	7.9
		HCI	20.0 mg/Nm3	6.2	8.12	7.3	6.47	5.2	5.2

34	Shed B18/02/24 Fan	SO ₂	40 mg/NM ³	Not Running	13.8	17.4	34.1	27.9	20.6
		CI ₂	9 mg/NM ³		6.2	4.9	5	8.5	7.9
		HCI	20 mg/NM ³	ľ	9	5	5.1	8.73	8.1
35	Shed C5/20/15 Chlorinator	Cl ₂	9.0 mg/Nm3	7.9	6.2	5.2	3.8	7.4	7.4
		HCI	20.0 mg/Nm3	8.1	6.37	5.35	3.9	7.6	7.6
36	Shed D Niro Spray dryer No. 45	PM	150.0 mg/Nm3	Not Running	Not Running	Not Running	Not Running	Not Running	94
37	Shed D Niro Spray dryer No.50	PM	150.0 mg/Nm3	Not Running	Not Running	Not Running	Not Running	Not Running	Not Running
38	Shed E 7/12/49 Spray Dryer	PM	150.0 mg/Nm3	41.7	69.7	Not Running	Not Running	Not Running	44
39	Shed F F6/1/15 Reaction Vessel	CI ₂	9.0 mg/Nm3	Not Running	Not Running	Not Running	Not Running	Not Running	Not Running
		HCI	20.0 mg/Nm3		CSF02	446		- 83	100
40	Shed G 10/8/1 (receiver)	CI ₂	9.0 mg/Nm3	Not Running	Not Running	Not Running	Not Running	Not Running	Not Running
	A STATE OF THE STA	HCI	20.0 mg/Nm3		5000 0000 0000 0000 0000 0000 0000 000	SSENIONS AND SSENIONS	and a state of the	-ce-ceconeron	
41	Shed H 11/6/17 chlorinator	CI ₂	9.0 mg/Nm3	4.3	5.8	7.1	5.5	7.1	7.1
		HCI	20.0 mg/Nm3	12.4	14.8	14.7	10.6	11.7	11.2
42	Shed K K-13/3/4 Final of Sulfuric acid	SO ₂	2.0 kg/T	0.8	1.2	1.12	0.45	1.2	1.6
	plant	Acid Mist	50.0 mg/Nm3	2	4.6	4.65	1.6	20.6	8.2
43	Shed J15/09/25	HBr	-	ND	ND	ND	ND	ND	ND
		502	40 mg/NM ³	30.5	36.2	20.9	13.6	25.9	33.6
44	Shed J12/01/42	SO ₂	40 mg/NM ³	27.9	29.8	Not Running	Not Running	24.7	19.1
		CI2	9.0 mg/Nm3	7.5	5.9	1		7.9	6.4
		HC1	20.0 mg/Nm3	7.7	11.4			8.12	6.6
45	Shed J12/03/36	SO ₂	40 mg/NM ³ 20.0 mg/Nm3	Not Running	Not Running	Not Running	Not Running	Not Running	Not Running
46	Shed N Scrubber Fan N20/08/24	CI ₂	9 mg/NM³	7.9	5.5	6.4	6.7	6.1	7.9
	38.383	HC1	20 mg/NM ³	8.1	10.2	17.1	6.88	6.3	8.13
47	Shed N Scrubber Fan N20/02/41	SO,	40 mg/NM ³	34.5	24.7	33.2	20.6	34.2	29.7
48	Sulfer Black Plant	H _o S		ND	ND	ND	1.12	ND	ND
		NH ₃	175 mg/NM ³	140	79.9	90	110	94	125
	A STATE OF THE STA	H _o S		ND	ND	ND	ND	ND	ND
49	Sulfer Dyes plant	NH ₃	175 mg/NM ³	39.8	81.6	94.8	75.1	56	106
50	Flavors & Fragrances Plant	HC1	20 mg/NM ³	Not Running	Not Running	Not Running	Not Running	Not Running	Not Running
Atul No	th Site								
51	N-FDH Plant Catalytic Incinerator	PM	150.0 mg/Nm3	Not Running	Not Running	Not Running	Not Running	Not Running	Not Running
		SO ₂	40.0 mg/Nm3						
		NOx	25.0 mg/Nm3						
		Formaldeh yde	10.0 mg/Nm3	g c					
52	PHIN Plant	Phosgene	0.1 ppm	ND	ND	ND	ND	ND	ND
53	PHIN-II Plant	HC1	20 mg/NM ³	3.7	7.9	7.9	7.3	1.3	2.1
54	DDS Plant (Pharma Plant)	NH ₆	175 Mg/Nm3	130	90	75	50	44	96
55	SPIC II Plant (DCDPS)	SO ₃	202	15.8	ND	Not Running	24.75	17.6	11.8
56	SPIC I Plant	NH ₃	175 mg/Nm3	155	140	140	130	160	125
57	SPIC IV Plant	NH ₃	175 mg/NM ³	80	110	80	155	140	136
		SO ₃		11.3	ND	ND	ND	14.8	14.6

Sr. No.	Stack Details	Paramente	Permissible	Obtained Value	Obtained Value	Obtained Value	Obtained	Obtained	Obtained
		r	Limits				Value	Value	Value
East site					4				
1	FBC boiler El	PM	100 mg/Nm3	40.4	Not Running	46.9	51.7	Not Running	49.7
		SO ₂	600 mg/Nm3	264		272	214		215
	7	NOx	600 mg/Nm3	316	1	246	201	8	256
2	FBC boiler E2	PM	100 mg/Nm3	Not Running	50.9	57.9	45.1	49.7	Not Running
	7	SO ₂	600 mg/Nm3	53%	265	259	224	215	180
		NOx	600 mg/Nm3		303	231	246	256	
3	FBC boiler E3	PM	100 mg/Nm3	68.4	76.4	Not Running	Not Running	54.7	54.7
	7	SO ₂	600 mg/Nm3	334	239	100	= 52	208	208
		NOx	600 mg/Nm3	310	285			196	196
4	Hot Oil Unit	PM	150.0 mg/Nm3	11.7	34.6	39.6	23.6	31.7	40.3
	(Resorcinol Plant)	SO ₂	100 ppm	4.8	10.4	11.6	9.9	6.2	9.3
		NOx	50 ppm	17.6	29.6	24.8	33.2	40.2	30.2
5	DG set 1010 KVA (Standby)	PM	150 mg/Nm ³	23.4	28.6	34.5	50.2	37.6	44.7
10.00		SO ₂	100 ppm	5.4	8.3	7.8	9.3	6.3	5.7
	-	NOx	50 ppm	39.7	30.7	33.9	49.7	29.5	32.4
West Site		inex.	эо ррии	23.0	24.7	20.2	oletek.	\$756E	2500000
6	FBC boiler W1	PM	100 mg/Nm3	50.2	61.7	56.7	49.6	56.2	64.7
190	- Iso some Wi	SO ₂	600 mg/Nm3	184	194	238	248	320	350
1		NOx	600 mg/Nm3	212	201	184	320	362	384
7	Hot Oil Plant shed-B	PM	150.0 mg/Nm3	ND	ND	39.6	23.2	34.1	51.7
	-	SO ₂	100 ppm	ND	3.2	11.6	6.5	6.8	8.6
		NOx	50 ppm	23.8	15.6	24.8	14.8	12.4	13.4
8	Oil burner Shed B	PM	150.0 mg/Nm3	Not Running	Not Running	Not Running	Not Running	Not Running	Not Running
	(Stand By)	SO ₂	100 ppm						
		NOx	50 ppm	1					
9	Boiler (50 TPH 2 Nos) (New boilers) W2,W3	PM	50 mg/Nm3	31.7	34.4	45.7	29.4	38.3	39.4
	- 002,003	SO ₂	600 mg/Nm3	198	180	244	290	210	324
		NOx	300 mg/Nm3	208	219	256	230	222	218
		Mercury	0.03 mg/Nm3	ND	ND	ND	ND	ND	ND
10	DG set 1500 KVA (Stand By)	PM	150.0 mg/Nm3	40.2	33.7	39.7	56.1	42.7	36.1
-	(Stard by)	SO ₂	100 ppm	6.2	9.6	6.4	11.4	5.8	4.9
-		NOx	50 ppm	25.9	38.4	29.7	39.4	24.8	29.7
North Site									
11	Thermic fluid heater of DCO/DAP Plant	PM	150.0 mg/Nm3	25.8	35.4	41.7	11.3	30.7	49.3
		SO ₂	100 ppm	5.9	8.4	62	5.9	6.4	10.4
		NOx	50 ppm	23.6	27.6	14.9	19.1	13.2	16.5

Annexure 4: Flue Gas Stack Details

1. Flue Gas Stack And it's Emission Control Measures:

Sr No.	Stack Details	Capacity TPH/ Stack Ht in m	Parameter	Permissible limit	APCD	Fuel	
1.	FBC boiler E1	34/56	PM	100 mg/Nm ³	Electro Static	Coal/Lignite	
			SO ₂	600 mg/Nm ³	Precipitator		
			NOx	600 mg/Nm ³			
2	FBC boiler E2	34/56	PM	100 mg/Nm ³	Electro Static	Coal/Lignite	
			SO ₂	600 mg/Nm ³	Precipitator		
			NOx	600 mg/Nm ³			
3	FBC boiler E3	50/80	PM	100 mg/Nm ³	Electro Static	Coal/Lignite	
			SO ₂	600 mg/Nm ³	Precipitator		
			NOx	600 mg/Nm ³			
4	FBC boiler W1	45/70	PM	100 mg/Nm ³	Electro Static	Coal/Lignite	
			SO ₂	600 mg/Nm ³	Precipitator		
			NOx	600 mg/Nm ³			
5	Boiler (50 TPH2	50/106	PM	100 mg/Nm ³	Electro Static	Coal/Lignite	
	Nos) (New		SO ₂	600 mg/Nm ³	Precipitator		
	boilers)W2,W3		NOx	600 mg/Nm ³			
6	Hot Oil Unit	H: 32.5	PM	150 mg/Nm ³	-	CNG	
	(Resorcinol Plant)		SO ₂	100 ppm		<u> </u>	
			NOx	50 ppm			
7	Hot Oil	H: 19	PM	150 mg/Nm ³	-	CNG	
	Plant shed-B		SO ₂	100 ppm			
			NOx	50 ppm			
8	Hot Oil	H: 17	PM	150 mg/Nm ³	-	CNG	
	Plant shed-B		SO ₂	100 ppm			
	(Stand By)		NOx	50 ppm			
9	Thermic fluid	H: 12	PM	150 mg/Nm ³	-	CNG	
	heater		SO ₂	100 ppm			
1.0	of DCO/DAP Plant		NOx	50 ppm		D: 1	
10	DG set 1010	H: 10	PM	150 mg/Nm ³	Adequate stack	Diesel	
	KVA(Standby)		SO ₂	100 ppm	Height		
11	DC 1500	11.44	NOx	50 ppm	A .l	Division	
11	DG set 1500	H: 11	PM	150 mg/Nm ³	Adequate stack	Diesel	
	KVA		SO ₂	100 ppm	Height		
	(Stand By)		NOx	50 ppm			

2. Process Gas Stacks & Its Emission Control Measures:-

Sr No.	Stack Details	Stack Height (meters)	Parameter	Permissible Limit	APCD
Atul E	East Site				
1	New Phosgene plant-Furnace	15	PM	150 mg/Nm ³	Alkali & Water Scrubber
2	New Phosgene plant -Reactor	15	CO Phosgene	 0.1 ppm	Alkali & Water Scrubber
Caus	tic Chlorine Plant	L	<u> </u>		
3	Dechlorination Plant(Hypo unit)	35	Cl ₂ HCl	9 mg/Nm3 20 mg/Nm3	Alkali Scrubber
4	Common Stack of HCl Sigri unit 1& 2	25	Cl ₂ HCl	9.mg/Nm3 20 mg/Nm3	Alkali Scrubber
Sulfu	ric Acid (East Site)		1	L	
5	Sulfuric Acid plant	30	SO ₂ Acid Mist	2.0 kg/T 50 mg/Nm3	Water Scrubber With DCDA System
6	Chloro Sulfonic Acid plant reactor	11	Cl ₂ HCl	9mg/Nm3 20mg/Nm3	Caustic And Water Scrubber
FCB I	Plant	•	•	-	•
7	Foul Gas Scrubber	26.5	SO ₂ NOx	40mg/Nm3 25mg/Nm3	Caustic scrubber
Incine	erator		•		
8	Incinerator	40	PM SO ₂ NOx	150mg/Nm3 40mg/Nm3 25mg/Nm3	Alkali& water scrubber
NI Plo	ant		INOX	231119/1111113	
9	Foul Gas Scrubber	26.5	SO ₂ NOx	40mg/Nm3 25mg/Nm3	Caustic scrubber
NBD	Plant				
10	Spray Dryer	21	РМ	150mg/Nm3	Water Scrubber
4.4		25	NOx	25mg/Nm3	
11 12	Scrubber S-902 Scrubber S-	25 25	Phosgene HCI	0.1 ppm 20mg/Nm3	Caustic scrubber Caustic scrubber
12	801/802	23	NOx	25mg/Nm3	Coustic scrubbei
2-4-[O & related Products:			I	<u> </u>
13	Common Scrubber; 2,4D Plant	5	Cl ₂ HCl Phenol	9mg/Nm3 20mg/Nm3	Caustic scrubber
14	Dryer-1	26.5	PM with Pesticide	20mg/Nm3	Bag Filter, Water Scrubber

15	Dryer-2		compound		Cyclone, Bag Filter,
16	Dryer-3	-	Compound		Caustic scrubber
17	Dryer-4				Coustic scrubber
18	-	-			
	Dryer-5			1	
	Plant:	7	District	0.1	C1' 1 1
19	Phosgene Scrubber at MPSL	7	Phosgene	0.1 ppm	Caustic scrubber
20	Central Scrubber at MPSL	7	Phosgene	0.1 ppm	Caustic scrubber
NICO	Plant:		-		
21	Central scrubber at Nico Plant	12	Acetonitrile		water scrubber
Resor	rcinol Plant				
22	Spray dryer	20	PM	150 mg/Nm ³	water scrubber
23	Scrubber vent	15	SO ₂	40mg/NM3	Caustic scrubber
24	Scrubber at Ester plant for Glyphosate	12	Formaldehyde	10mg/Nm3	water scrubber
Other		ı	<u> </u>	<u> </u>	
25	MCPA	19	Cl ₂	9 mg/NM3	Alkali& Water
			HCI	20mg/NM3	Scrubber
			SO ₂	40mg/NM3	
26	Fipronil	19	SO ₂	40mg/NM3	Alkali& Water
			HCI	20mg/Nm3	Scrubber
27	Imidacloprid	20	NH ₃	175 mg/Nm3	Water Followed By Acid Scrubber
28	Pyrathroids	19	SO ₂	40mg/Nm3	Alkali & Water
	, , , , , , , , , , , , , , , , , , , ,		HCI	20mg/Nm3	Scrubber
29	Stack at Amine Plant	5	NH ₃	175 Mg/Nm3	Caustic Scrubber
30	Central Scrubber MCPA Plant	19	HCI	20mg/Nm3	Caustic Scrubber
31	MPP Plant	21	HCI	20mg/Nm3	Water & Alkali
	Scrubber		Phosgene	0.1 ppm	Scrubber
32	Flavors & Fragrances Plant	21	HCI	20mg/NM3	Water Scrubber followed by caustic scrubber
33	Sulphur Black Plant	19	H ₂ S NH ₃	 175 mg/Nm3	Alkali & Water Scrubber
34	Sulphur Dyes Plant	19	H ₂ S		Alkali & Water
J-T	Sulphul Dyest lullt		NH ₃	175 mg/Nm3	Scrubber
Atul V	West Site		•	<u> </u>	•
35	Shed A05/03/44	19	Cl ₂	9 mg/NM3	Caustic Scrubber
			HCI	20 mg/NM3	
36	Shed B2/12/24	19	Cl ₂	9 mg/NM3	Caustic Scrubber
-	Reaction Vessel		HCI	20 mg/NM3	
37	Shed B18/02/24	19	SO ₂	40 mg/NM3	Caustic Scrubber
-,	Fan		Cl ₂	9.0mg/Nm3	25.5.5.5.5.5.5.6.6.6.6.6.6.6.6.6.6.6.6.6
	I dii	1	C12	J.OHIG/141113	

			HCI	20 mg/Nm3	
38	Shed C5/20/15	19	Cl ₂	9 mg/NM3	Alkali& Water
	Chlorinator	10	HCI	20 mg/NM3	Scrubber
39	Shed D Niro Spray	19	PM	150 mg/Nm ³	Water Scrubber
	dryerNo.45	15	1 141	130 1119/11111	VVater Serabber
40	Shed D Niro			150 mg/Nm³	Water Scrubber
	Spray dryer No. 50	19	PM	130 1119/11111	VVater Serabber
41	Shed E 7/12/49	19	PM	150 mg/Nm³	Water Scrubber
	Spray Dryer	10		100 1119/11111	Trater derasse.
42	Shed F 6/1/15	19	Cl ₂	9 mg/NM3	Alkali& Water
	Reaction Vessel		HCI	20 mg/NM3	Scrubber
43	Shed G 10/8/1	19	Cl ₂	9 mg/NM3	Alkali& Water
	(receiver)		HCI	20 mg/NM3	Scrubber
44	Shed H11/6/17	19	Cl ₂	9 mg/NM3	Alkali& Water
	Chlorinator	10	HCI	20 mg/NM3	Scrubber
45	Shed K K-13/3/4	19	SO ₂	2 kg/T	Alkali& Water
'5	Final of Sulfuric acid		Acid Mist	50 mg/NM3	Scrubber
	plant		, was will the	33 1119/141013	30, 30001
46	Shed J15/09/25	19	HBr		Alkali& Water
	35. , 10, 00, 20		SO ₂	40 mg/NM3	Scrubber
47	Shed J12/01/42	19	SO ₂	40mg/NM3	Alkali& Water
',	01104 j 12, 0 1, 12	10	Cl ₂	9.0mg/Nm3	Scrubber
			HCI	20 mg/Nm3	
48	Shed J12/03/36	19	SO ₂	40 mg/NM3	Caustic Scrubber
49	Shed N Scrubber	19	Cl ₂	9 mg/NM3	Caustic Scrubber
13	Fan N20/08/24		HCI	20mg/Nm3	- Cadstic Scrubber
50	Shed N Scrubber	19	SO ₂	40mg/NM3	Alkali& Water
30	Fan N20/02/41		302	+0111g/111119	Scrubber
North					Scrubber
51	N-FDH Plant	31.5	PM	150 mg/Nm³	Bag Filter
	Catalytic	0 2.0	SO ₂	40mg/Nm3	
	Incinerator		NOx	25mg/Nm3	
			Formaldehyde	10mg/Nm3	
			- Torridia Griyac		
52	PHIN Plant	15.5	Phosgene	0.1 ppm	Water Scrubber
					Followed By Two
					Stage Caustic
					Scrubber With
					Ammonia/Steam
					Injection At stack
53	DDS (Pharma	20	NH ₃	175mg/Nm3	Water Followed By
	Plant)				Acid Scrubber
54	SPIC II Plant				Alkali & Water
	(DCDPS)	30	SO ₃		Scrubber
55	SPIC I Plant	30	NH ₃	175mg/Nm3	Water Scrubber
					Followed By Two
					Stage Caustic
					Scrubber With
					Ammonia/Steam

					Injection At Stack
56	SPIC IV Plant	2	NH ₃	175mg/Nm3	Alkali & Water
			SO ₃		Scrubber
57	PHIN II Plant	21	HCI	20mg/Nm3	Water Scrubber
			Phosgene	0.1 ppm	Followed By Two
					Stage Caustic
					Scrubber With
					Ammonia/Steam
					injection At Stack

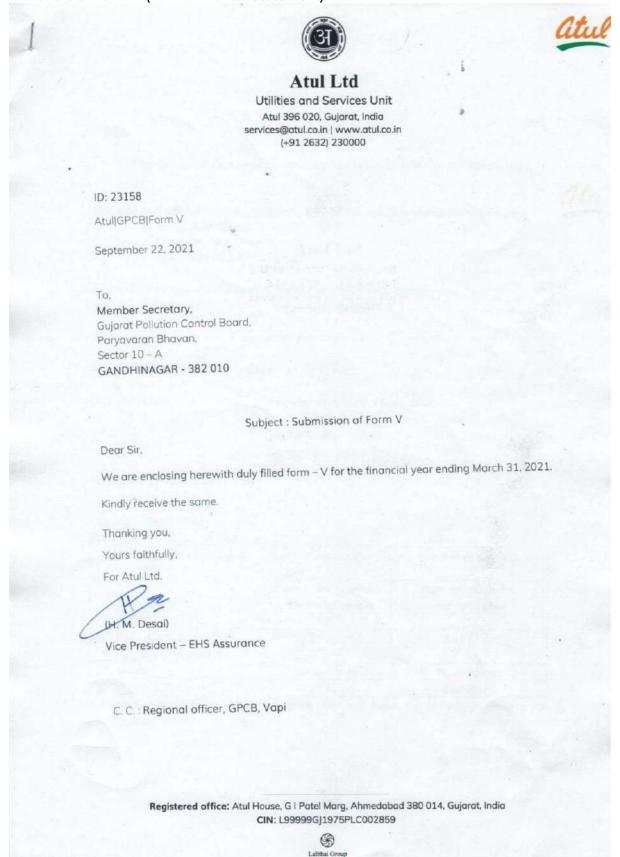
Annexure 5: Details of Solvent Storage

Ann	Annexure 5: Details of Solvent Storage							
Sr	Name of	Quantity		Place of	State &	Type of	Control Measures	
No.	Hazardous Substance	Max. qty. can be stored	Qty. stored	its Storage	Operating Pressure & Temp.	Hazard	Provided	
1	Methanol (Group 5 - 2)	470 MT	350 MT	Methanol Storage Tank Farm	Liquid at RT atmos. pressure	Fire	Flame arrester, earthing dyke wall to over ground Tank fire water	
2	Benzene	180 MT	100 MT	Resorcinol	Liquid at RT atmos. pressure	Fire	Isolated storage, FLP, Flam arrester, Breather valve, Ll, Fire hydrant, sand etc.	
3	Xylene	60	30	MPSL- NICO Plant	Atmospheric Normal Temp.	Fire	Dyke wall, Fire hydrant line, FLP, Spark arrester, Prohibited for vehicle movement &unauthorized person.	
4	Methanol	650 m ³	50 m ³	Methanol Tank farm north site.	Liquid at RT, atmos. Pressure	Fire & Toxic spill	Isolated storage, FLP, Flam arrester, Breather valve, LI, Fire hydrant, sand etc.	
5	Toluene	40 m ³	30 m ³	Phin & PO plant	Liquid at RT, atmos. Pressure	Fire	Isolated storage, FLP, Flam arrester, Breather valve, LI, Fire hydrant, sand etc.	
6	Toluene	120 KL	100 KL	Shed C	Atmo. Press and temp.	Fire &Chemi cal spillage	Underground tank, prohibited are, FLP, foam trolley etc.	
7	Ethanol /Methanol	51 KL	40 KL	Shed N & A	Atmo. Press and temp.	Gas leakage, Spill	Respirators, Dry Sand, Dyke wall, spare tank	
8	МСВ	105 MT	100 KI	Shed C	Atmo. Press and temp.	Fire &Chemi cal spillage	Underground tank, prohibited are, FLP, foam trolley etc.	

Annexure 6: All Hazardous materials other than solvent are stored with details along with control measure

Sr No.	Name of RM	МОС	Tank type	Nos of tank	Capacity	Control Measures Provided
1	65% Oleum	MS, IS- 2825	Above ground	2	65 MT	Dyke wall with valve, do not allow the spill to mix with water, vent with Acid seal, spare storage tank for emergency transfer, Dry sand beds for spill Control, tank level meter
2	Chlorine	CS	Above ground	4	200	Two standby tank, DCS controlling, Hypo scrubbing, SCBA, Emergency chlorine kit & hood blower etc.
3	Epichloro- hydrin	MS	Above ground	6	55 M ³	Flame arrester earthing, dyke wall with valve which do not allow liquid spill to go to normal drain.
4	Sulphur Trioxide (Group 2)	MS	Above ground	2	13 MT	Dyke wall with valve, with valve do not allow the spill to mix with water, vent with Acid seal, spare storage tank for emergency transfer
5	Ammonia Anhydrous	MS	Above ground	1	10	High Alarm switch Water sprinkler, Fog Nozzles, Dyke wall
6	65% Oleum	MS	Above ground	2	72	Respirators, Dry Sand, Dyke wall, Spare tank, High alarm switch
7	Caustic	MS	Above ground	4	530 MT	Dyke wall, LI & LT, DCS controlling etc.
8	Hydrogen	MS	Above ground	1	100 nm ³	Prohibited for men & vehicle movement, Isolated storage, FLP, Flam arrester, PG & PT, Fire hydrant, 7 Fire extinguisher etc.
9	Chloro Sulphonic Acid	SS 316	Above ground	4	30	Respirators, Dry Sand, Dyke wall, spare tank
10	Sulfuric acid	MS	Above ground	4	800	Emergency tank, Dyke wall, LT, DCS controlling, Level alarm etc.
11	Liq. SO₃	MS	Above ground	3	40 MT	Emergency tank, LT & LI, DCS controlling, Level alarm etc.
12	HCI	PP FRP	Above ground	3	200 KL	Dyke wall, LI & LT, DCS controlling etc.

Mitigation Measures as per risk assessment report:-


- Secondary Containment to all storage areas of Hazardous materials with leakage collection system is provided.
- Spill kits are made available at all locations of hazardous materials.
- Fire hydrant system is provided at Hazardous materials storage area.

Annexure 7: CSR Activities

	CSR activities		
Sr. No.	Name of Project	Project cost (Budget)	Total spent till October 2021
1	Enhancement of educational practices in Kalyani Shala	30,00,000	1,05,00
2	Improvement of teaching methodology for primary school children - Adhyapika project	60,00,000	33,65,65
3	Support to tribal children in Atul Vidyamandir	5,00,000	70,00
4	Support to develop a school in a tribal area	15,00,000	11,94,20
5	Provision of scholarships to needy and meritorious students	5,00,000	3,72,63
6	Provision of education kits to children	5,00.000	3,94,50
7	Support needy special children	5,00,000	1,66,67
8	Provide digital education through Tab Lab	25,00,000	6,11,42
9	Conservation of manuscripts	50,00,000	25,00,00
10	Support children with special needs	1,00,000	50,00
11	Promote learning and life skills among children	1,00,000	1,00,00
12	Contribution towards publication of books on Indian culture Ecology Philosophy	3,00,000	3,50,00
13	Skills training to youth as apprentices	1,00,00,000	51,59,79
14	Empowerment of women youth through various vocational training courses	10,00,000	21,04,92
15	Skill development of youth through vocational training with NABARD	18,00,000	
16	Develop micro entrepreneurs to provide sustainable livelihood	20,00,000	7,69,70
17	Create livelihood opportunities fortribal families by providing cows	35,00,000	9,37,00
18	Empower women through self-help groups	20,00,000	68,47

19	Enhancement of rural health through health camps	10,00,000	5,23,920
20	Promote Nutrition Gardens	10,00,000	2,93,080
21	Establish Atul Medical Diagnostic Centre	5,00,00,000	zë.
22	Promote health and wellbeing of adolescents and women (including sampoorna project)	20,00,000	7,11,372
23	Provision of blood units to the needy and deserted patients	2,00,000	2,40,000
24	Support to needy patients	5,00,000	2,03,045
25	Support to disaster relief for COVID-19 pandemic	1,50,00,000	1,23,64,537
26	Construction of walkway and streetlights	70,00,000	55,31,528
27	Infrastructure development in Atul and surrounding villages	45,00,000	33,79,977
28	Establishment of solid waste management system in Atul village	55,00,000	54,83,981
29	Natural resource management	50,00,000	5,02,052
30	Conservation of energy through Solar	30,00,000	
31	Nature based wastewater recycling project	75,00,000	遌
Total C	SR budget	14,30,00,000	4,75,53,482
Adminis	strative overheads	70,00,000	21,58,626
Total		15,00,00,000	4,97,12,108

Annexure 8: Form V (Environmental Statement)

[Form V]

(See Rule 14)

Environmental Statement for the financial year ending the 31st March 2021

Part - A

(i) Name and address of the owner/occupier of the industry operation or process.

Mr. B. N. Mohanan Occupier, Atul Limited, Atul – 396 020, Dist.: Valsad

- (ii) Industry category Primary (STC code) Secondary (STC code)

 Large scale Chemical Manufacturing Industry
- (iii) Production Capacity Please refer Annexure 1
- (iv) Year of establishment : 1952
- (v) Date of last environmental Statement submitted: Sept. 2020.

Part - B

Water and Raw Material Consumption

(1) Water consumption m³/day

Process: 6949 kl/day
Cooling: 1698 kl/day
Demostic : 343 kl/day

Sr. No.	Name of products	Process water consumption per unit of product output		
		During the previous financial year	During the current financial year	
		(1)	(2)	
	products and - inic chemical	3.91 kl/mt	3.84 kl/mt	
2. Colour	S	69.26 kl/mt	95.10 kl/mt*	
3. Pharm	a & Polymer	4.22 kl/mt	3.67 kl/mt	

^{*}Due to Covid pandemic, production goes down and hence per MT water consumption has gone up.

Page 1 of 18

(2) Raw material consumption

*Name of raw	Name of products	 Consumption of raw material per unit of output 		
materials	northweight and the	During the previous financial year	During the current financial year	

Please refer Annexure - 2

Part - C
Pollution discharged to environment/unit of output

(Parameter as specified in the consent issued)

Pollutants	Quantity of pollutants discharged (mass/day)	Concentrations of pollutants in discharges (mass/volume)	Percentage of variation from prescribed standards with reasons
(a)Water	COD	: 1464 kg/day	NIL
(b)Air	SO2	: 22.43 Mg/NM ³	
	NOx	: 16.26 Mg/NM ³	
	HCI	: 8.45 Mg/NM ³	
	CI2	: 6.29 Mg/NM ³	
	NH3	: 80.83 Mg/NM ³	
	Phosgene	: Not Detected	

Page 2 of 18

^{*} Industry may use codes if disclosing details of raw material would violate contractual obligations, otherwise all industries have to name the raw materials used.

Part - D

Hazardous Wastes

(as specified under Hazardous Wastes (Management & Handling) Rules, 1989)

Hazardous Wastes	Total Quantit	ty (kg)	
	During the previous financial year	During the current Financial year	
From process	33156690	36136215	
From pollution control facilities	18917000	22269000	
Total	52073690	58405215	

Part - E

Solid Waste

Solid Wastes	Total Quantity (kg)		
	During the previous financial year	During the current financial year	
(a)From process (Fly Ash)	96513087	97007642	
(b)From pollution control facility			
(c) (1) Quantity recycled or re-utilised within the unit	Nil	Nil	
(2) Sold	96513087	97007642	
(3) Disposed			

Part - F

Please specify the characterisation (in terms of composition and quantum) of hazardous as well as solid wastes and indicate disposal practice adopted for both these categories of wastes.

Please Refer Annexure - 3

Page 3. of 18

Part - G

Impact of the pollution abatement measures taken on conservation of natural resources and on the cost of production.

Please Refer Annexure - 4

Part - H

Additional measures/investment proposal for environmental protection abatement of pollution, prevention of pollution.

Please Refer Annexure - 5

Part - I

Any other particulars for improving the quality of the environment.

- a. Company is ISO 14001:2015 (EMS) certified.
- b. Underground effluent network has been replaced with above ground pipe line as a proactive measure for transferring effluent from production plants to ETP. Phase 1 completed.
- c. Recovery of various materials like Copper hydroxide, methanol, salt, mix dyes, ammonia, etc. from the effluent streams is an ongoing process.

Apart from above, company has taken following initiatives during 20-21 despite COVID 19 pandemic:

- 1. Three MEEs and two ZLD installation are in progress.
- Candle filter installed instead of demister pad in final absorption tower of sulfuric acid plant to reduce gas emission from chimney due to acid mist carry forward from final absorption tower.
- 3. Dust suppression system introduced at fly ash silo and coal storage area.
- Digital display as per NGT guideline is placed at main gate.
- 5. Asphalt concrete roads (internal as well approach road) upgraded to RCC road.
- 6. OCEMS has been upgraded for auto calibration facility as per latest CPCB guideline.
- 7. Company has started collecting and disposing plastic waste as per PWM rules 2016.

Page 4 of 18

Further below projects are under process | planned:

A. Upgradation of North ETP for treated water reuse: High Efficiency Air Dissolved air flotation (HEAF) unit has been introduced after equalization tank to remove TSS, oil and grease, emulsion etc.

Installation of MBR-Membrane Bio Reactor and RO System at NETP is delayed due to COVID pandemic and expected to complete within six months.

B. Installation of New MEE:

We are installing new MEE having scale ban technology simultaneously for high TDS|brine effluent. New MEE plant is under commissioning phase. Scale ban technology installation work done. Its performance trial is in progress.

Page 5 of 18

Annexure: 1: list of Products

Product	Consented Quantity TPA	
Azo dyes	6600	
Sulfur Black	9999.96	
Sulfur Dyes range	300	
Naphthol range	900	
Fast Color Bases	480	
Disperse dyes	1422	
Optical Brighteners	120	
Reactive Dyes	1527.6	
Vat dyes	1260	
Caustic soda/potash & sodium sulfide	48000	
Liquid Chlorine /Hcl/Hydrogen	42000	
Carbamate group of Agrochemicals	519.6	
Diuron	2640	
Trichlo Carbon	99.6	
Cartap Hcl	600	
Carbendazim	250.8	
Herbicides (2,4-D & related products)	26040	
MCPA		
Pyridine based Insecticides & herbicides	349.92	
chemical Imidacloprid		
Triazole based Fungiside	20.04	
Pyrethroides	120	
Sulphonyl Urea	423	
Glyphosate	780	
Isoprothiolane	219.6	
Fipronil	60	
Formulations	2400	
Buprofesin	48 .	
Imazethpyr	21.96	
Kresoxim Methyl	24.96	
Fenoxaprop	9.96	
Cyhalofop	9.96	
Pyrazosulfurone	6	
BisPyribac Sodium	9.96	

Page 6 of 18

Azoxystrobin	24.96
Quizalofop	15
Thiamethoxam	120
Metribuzine	120
Diafenthiurone	50.04
Mabendazole *	24
Tolbutamide	30
Quiniodochlor	180
Bulk Drugs & Intermediates	115.2
Dechlofenac sodium / potassium	30
Atenolol	20.4
Fresamide	15.6
Trimethoprim	10.8
Para hydroxy acetophenone	20.4
Para hydroxy phenyl acetamide	36
Acyclovir	62.4
Bathenechol	62.4
Pharma Intermediates & Chemicals	3600
Epoxy Resin	31200
Vinyl Easter Resins	450
Ketone Formaldehyde Resins & Sulphonamide, Formaldehyde Resins	249.6
UF/MF/PF/DiCyandiamide Resins	3250.8
Polyamide resins	1940.4
Polygrip TPU based	500.04
Polygrip rubber based	3600
Anthraquinone, Naphthalene, Benzene Intermediates.(Including Beta – Napthol & BON Acid)	8880
Meta hydroxy phenol	5520
Carbamite	360
Chlorzoxazone & other related products	60
4 Ethyl 2,3 – Diorcopiperazino carbonyl Chloride	39.6
lmino Dibenzyl 5 carbonyl Chloride	9.6
Formaldehyde and base products.	38400
Sulfuric Acid / Oleum / Chlorosulphonic Acid & Salts	138600
Sulpha Drug Intermediate	2325.6

Page 7 of 18

Acetyl Sulphanilyl Chloride and its derivatives.	18000
Acetanilide	6000
Sulpha Methyl Phenažole Sodium	13.2
Pyrazole Base	126
Sulphanilic acid	300
Bis Phenol A	5000.4
Hexamine	1800
Epoxy Intermediates	285.6
Hardener & Auxiliaries	6000
Hardener Intermediates	8400
Bisphenol S & Intermediate Chemicals	199.2
Sodium Thio sulphate (dry basis)	10800
Sodium Thio sulphate (wet basis)	22800
Phosgene	5000.004
HX-13059	60
Anisole	1992
Resoform 18,19,20	1020
1,3 Cyclohexanedione	960
Agro, Pharma intermediates, Isocyanats &	4980
Carbonat Esters, etc.	STICKET THE
Trans-4-MCHI	Shirtenier I
p-Anisyl chloroformate	Carrent !
DI-TERT-BUTYL DICARBONATE (Boc. anhydride)	tran men
N, N- Disuccinimidyl Carbonate	Per present
Avobenzene	999.96
Octacrylene	999.96
OctaylMethoxy Cinnamate	2400
Anethole	1999.92
Raspberry Ketone	1200
P-AninylPropanal	1200
Grand Total Production Sodium Thiosulphate	466922.004
(dry basis)	
Grand Total Production Sodium Thiosulphate (wet basis)	478922.004

Page 8 of 18

Annexure: 2: List of raw material

<u>Name</u>	Amount in Tonnes* per month	
Aluminium ingots	18	
Iron Fillings	50	
Alum	40	
Aluminium Chloride	66	
Anhydrous Ammonia	9	
Ammonia gas liquor 25 %(In tanker)	317	
Caustic Potash Flakes	75	
Caustic Soda Flakes	2623	
Caustic soda lye	1218	
Caustic Soda Solution	1325	
Chlorine	3822	
Chlorosulphonic Acid	250	
Hydrochloric Acid (gas)	1000	
Hydrochloric Acid 33%	3679	
Hydrated Lime	2000	
Lime stone powder	1257	
Manganese Dioxide	220	
Nitric Acid 98%	95	
Nitric Acid 60%	50	
Oleum 65%	1221	
Oleum 25%	140	
Phosphoric Acid	50	
Potassium Chloride	360	
Sodium Chloride	6000	
Sodium Thiosulphate	195	
Soda Ash	182	
Sulphuric Acid 98%	2497	
Sulphur Powder	1900	
Sodium Carbonate	60	
Copper chloride	4	

Page 9 of 18

Activated carbon	1
Sulfinate	1
SOCI2 *	2
15% sodium bicarbonate	3
15% H2O2	24
10% FeSO4	10
Guanidine Nitrate	15
КОН	117
Acetanilide	52
Acetic acid	23
Acetic Anhydride	6.5
Acetonitrile	67
Acetone	33
Aniline oil	43
Anthraquinone	6
Benzene(KL.)	660
Bis Phenol A	1582
Castor oil (Comm.)	35
Cyanuric Chloride	18
Di Chloro Diphenyl sulphone	107
Dibutyl phthalate	7
Dimethyl Sulphate	148
Dimethyl Formamide (DMF)	34
Dimethyl Amino Dichloro Propane Hydrochloride	40
Epichlohydrine	4911
Formaldehyde	28
Glycerin	24
H-Acid	12
Hexa Hydro Phthalic anhydride	9
Methanol (KL.)	1100
Mono Chloro Acetic Acid	2170
Napthalene crude	60.
Phenol	1200
Phthalic anhydride	55
Synthetic cresol	5
Tamol MNO	50
Tri ethylene tetramine	13
Toluene	80

Page 10 of 18

Urea	183
IPA	₹30
Cresol	133
MCB	86
Ethyl acetate	8
DMA Tosylate	9
Cyano Pyrazole	5
Ethyl acetate	46
PMIDA	69
EDA	31
2, Chloro 5-methyl chloro pyridine	17
Sodium Methoxide	9
Di isopropyl malonate	8
CS2	4
Ethylene Dibromide	7
n-Hexane	17
O-cresol	503
SO2CI2	376
DPS	1
PCF	13
2 Amino 4-6-Dimethoxy pyridine	13
Dioxane	45
N-N Dimethyl aniline	15
SNA	15
DBU	9
TFE	2
Thionyl Chloride	1
m-phenoxy benzaldehyde	2
Fuel:	
Coal / Lignite	46925
Diesel Oil (KI)	640
Furnace oil (KI)	1100
Natural gas (m3)	200000

Page 11 of 18

Annexure: 3: Description of Solid Waste at Atul

Description of waste	Physical form	Calorific Value Cal / gms	Biodegradability	Nature / Chemical composition of Waste
Used oil, KI	Wet cake		Biodegradable	Lubricant oil with minor contamination
Wastes / residues / contaminant cotton rags or other cleaing material	Solid		Biodegradable	Lubricant oil with minor contamination
Sludge & filters contaminated with oil,	Semi solid		Department	Calvella :
Membranes	Solid	-		Polyfluoro & Polycarboxylic groups
Waste Resin,	Solid	•	Non biodegradable	Polymer
Sulfurised Carbon,	Solid	6000	KI gowonii 26.	Carbon and impurity of product
Activated Carbon,	Solid	6000	enthos less	Carbon and impurity of product
Brine purification sludge,	Sludge	No Calorific Value	Non biodegradable	Inorganic compounds e.g CaCo ₃ , Mg(OH) ₂
Sulphur sludge,	Solid	5000	Partially Bio-degradable	Inorganic compounds and Sulphur
Hot Gas filter Ash,	Solid	No calorific Value	Non biodegradable	Inorganic Material
Bottom Sludge after recovery of Sulphur Sludge,	Solid	5000	Partialy Biodegradable	Inorganic
Waste Catalyst,	Solid	No calorific Value	Non biodegradable	Inorganic, Not explosive, Non Reactivie
Spent Solvents, KI/Month	Liq	South sent work	To propagate	Solvent
Various type of Residue	Solid	6500	Partially Bio-degradable	Polymeric aromatic Organics.

Page 12 of 18

OCBC / OCT distillation residue,	Visc. Liq.	8000	Not Bio-degradable	Polymeric aromatic compound.
waste residue Bulk Intermediate (meta ńydroxy phenol) (Tar),	Solid	•	- 1000	10-12% Hydroxyl based benzene derivative
Waste residue (from resorcinol plant)	Solid	-	ren ,	
Gypsum (From meta hydroxy phenol Plant),	Solid	Not Applicable	Non biodegradable	Inorganic Compound Mostly Calcium Sulphate 75 - 77%, Moisture 23-25%
Sodium Sulphite,	Solid	Not Applicable		Inorganic Compound, Mostly Sodium Sulphite 70-75%, Moisture 25-30%
Waste/Salt Lime Dust	Powder	-	- Carried	Inorganic Compound
Waste from Urea Formaldehyde Polymer product,	Solid	3500	Bio-degradable	Organic polymeric compound
Sludge containing higheramino compound,	Tar	5200	Bio-degradable	Polymeric organic amines
Filter cake of Epoxy resins with resin contamination	Semi Solid	3200	Bio-degradable	Polymeric organic compound
Aluminium Hydroxide,	Solid	No calorific Value	Non biodegradable	Mostly Al Hydroxide
Iron sludge,	Solid	No calorific Value	Non biodegradable	Mostly Iron, oxide
Brass residue,	Solid	No calorific Value	Non biodegradable	Mostly Copper & Iron.
Still / Other residue,	Tar	6500	Partially Bio-degradable	Polymeric aromatic Organics.
Darco / filter aid sludge,	Solid	2500	Partially Bio-degradable	Mainly Carbon.

Page 13 of 18

Iron Residue,	Wet cake		Non biodegradable	Water, iron	
Hyflo sludge,	Wet cake			0.87 % Specific gravity, 80% solid, Inorganic & organic content	
PER crystal residue,	Semi Solid	MI TO SERVICE	THE REPORT OF	Specific gravity 1.1557, Organic	
Filter aid sludge for Hg recovery,	-			Containing Hg	
Aluminium Ash,	Solid	• alakin	Non biodegradable	Water, oxides of Aluminium & Aluminium Metal	
N.B.Tar / ODCB Tar	Semi Solid	-	- Joseph	- NUSCIPECIFIES UNITS	
ONT Tar	Solid / Tary	-	-	ismus statistica.	
Copper Hydroxide Wet cake	Solid	Not applicable	Non biodegradable	Copper Hydroxide	
Dust from Air Filtration System,	Solid		1 10 10 10 10 10 10 10 10 10 10 10 10 10	Residual product particle	
Spent Acid	Liquid	Not applicable	Non biodegradable	Sulphuric acid	
Spent Organic solvent	Liquid		· In the second	Mainly contains Spent Organic solvent	
Waste Residue (Phin)	Solid				
DCDPS waste	Solid		-	- 0.000 (0.000)	
Waste from Pharma intermediates	Solid	-	and page	subulg platestil com-	
Spent Carbon catalyst	Solid	-		-	
Spent carbon,	Solid	6000	Biodegradable	Carbon cake contains aq Methanol Aqueous Carbon Cake	

Page 14 of 18

Date expired, discarded and off- specification product,	Solid		•		
Spent Mother liquor, KI/Month	Liquid		- 5002	Mainly contains Spent Organic solvent	
Spent Solvents, KI/Month	Liq	:	-	Solvent	
Still / Other residue,	Tar	6500 Partially Bio-degradable		Polymeric aromatic Organics.	
Pyridine based insecticides & herbicides (Darco / Filter aid Sludge),	Solid	2500	Partly biodegradable	Mainly carbon	
Sulfonyl Urea (Residue),	Solid	6500	Partly biodegradable	Polymeric Organic	
Triazole based Fungicides (Residue),	Solid	6500	Partly biodegradable	Polymeric Organic	
Pyrethroides	Solid	6500	Partly biodegradable	Polymeric Organic	
Dust (Agro plant)	Solid		on See	Mixture of Dust, Rust & Spillage chemicals	
Hyflo,	Semi Solid	No Calorific Value	Non biodegradable	Non flammable, non reactive, partly organic -Inorganic	
Dust from Air Filtration System,	Solid		- 3462	Residual product particles	
Liners /Bags, NOs	Solid	NA .	NA	Without any Chemical contamination after decontamination	
Drums /HDPE Carboys,	Solid	NA	NA	Without any Chemical contamination after decontamination	
Chemical containing residue from decontamination and disposal,	solid		a munitive	Day who	
Flue gas cleaning residue,	Solid	-			

Page 15 of 18

Toxic metal containing residue from used-ion	Solid		· HE BUILD !	State topped serboty sour
exchange material; in water purification,			PL.	emerates almostes rend
Sludge from ETP, Gypsum from ETP, Chemical Gypsum, sludge from waste water treatment	Semi solid	No Calorific Value	Partly biodegradable	Mostly gypsum
MEA distillation residue,	Visc. Liq.	9500	Partly biodegradable	Polymeric aromatic compound
Spent Catalyst,	Solid	Islam .		
Sludge from wet scrubber,	Solid	čm ¹		· San Mala Sentra
Incineration ash,	Solid	No Calorific Value	Non biodegradable	Inorganic compounds e.g Silica, NaCl.
Salt from MEE	Solid	Not applicable	Non biodegradable	99% Sodium salt
Dilute MnSo4	Liquid	-	-	-
2,6 Dichloro phenol	Solid	-	- Justine	Phenolic compound
2,4,6 Trichloro phenol	Solid		- case	Phenolic compound
p-CBSA/Na-Salt	Solid	-	AR FINE	pCBSA
High TDS / High COD effluent	Liquid		-4-4-1	-
30% HCI	Liquid	-	- 200	Spent acid .

Annexure: 4:

Water Conservation

Following actions were taken for water conservation during recent year.

- a) Utilized Steam condensate from Process plants of East site in Boilers.
- Boiler cooling tower blow down water is reused in water mist system at coal storage area for dust suppression.
- c) Recycling of treated waste water: We have started using primary treated effluent for making lime slurry in our ETP. By doing so, we are able to save approximately 200 KL/day of fresh water.
- d) Fresh water consumption reduced by increasing COC of cooling tower by providing chemical water treatment and providing side stream filter.
- e) Using treated effluent in scrubbers
- f) Reuse of Hydrogen seal wash water at Caustic plant
- g) Reuse wash water in NICO & MPSL plant
- h) Recycling of filter cloth & drum top cleaning water in Amine plant

Rain water harvesting: In few plants, rain water is being recharged from the terrace and has been used as a makeup of cooling tower during the monsoon season.

We already have two numbers of check dams in natural storm water drains to collect and harvest rain water in Monsoon.

A big pond having approximate storing capacity of 9000 KL to store surface runoff coming from Parnera hill area has been developed and in use.

Company has harvest 7.32 KL rain water during 2020.

Energy Conservation

Electricity forms one of the important components of energy used at Atul Limited. Major part of electricity used at Atul, is produced in the coal based captive power plant.

Energy Conservation Measures:

- a) Controlling steam pressure of steam ejectors.
- b) Optimization of pump size as per actual operating requirement.
- c) Utilizing 3 bar steam in place of 7 bar steam to increase electricity generation benefit.
- d) Centralize utility facility for sulfa plants-CP.
- e) Installation of VFD for chiller.
- f) Installation of energy efficient cooling water pump with VFD-PT logic.

Page 17 of 18

Oil conservation

We have continued with our Oil Conservation Project, an essential component in pursuit of sustainable development. We are collecting used lubricant oil under this project and sending it to GPCB authorised party.

Annexure: 5:

Details of Investment for Environment Protection for the year 2020-21

S.N	Parameter	Capital cost per annum (Rs. In lacs) 2020-21	Recurring Cost per annum (Rs. in lacs) 2020-21		
1	Air Pollution Control	266.29	Sun visit 200 yardymc)		
2	Liquid Pollution Control	1505.48	4933.73		
3	Environmental Monitoring and Management	88.02	37.06		
4	Solid waste Disposal		693.71		
5	Occupational health		30		
6	Green belt	· ALTERNATION OF THE STATE OF T	12		
Total		1859.79	5652.51		

Page 18 of 18

Annexure 9 : Environmental protection measures and safeguards proposed in the project

Sr No.	Potential impact	Action to be followed	Parameters for monitoring	Frequency of monitoring	Status of Compliance
1	Air Emission	Adequate stack height APCM-Multi Cyclone & Scrubber is provided as APCM AAQ within the project premises and nearby habitations to be monitored. All vehicles to be PUC certificate	SPM, RSPM, SO2 and NOx, Vehicle logs to be maintained.	Monthly through external agency NABL Approved	Stack and APCM details are provided in EC Compliance Point No.4 of Conditions. Quality of gaseous emission and AAQ
2	Noise	Noise generating from operation of boiler, cooling towers &plant & M/c area to be monitored.	Spot noise level Recording	Monthly through NABL Approved external agency	Carried out at the periphery of whole plant premises
3	Waste Water Discharge	Compliance to the wastewater discharge standards complete effluent treatment Plant-Primary + Secondary & MEE, ZLD is achieved	pH, TSS, TDS, COD, BOD, Oil & Grease	Monthly through NABL Approved external agency	Discharge effluent is analyzed on daily basis.
4	Solid/ Hazardous Waste	Check compliance of HWM rules	Quantity and quality monitoring	Periodically	Details are provided in EC compliance point No.10 of specific conditions
5	Non routine events and accidental release	Plant drawn, considering likely emergencies and steps required to prevent/limit consequences.	Mock drills and records of the same.	Periodic during process activities	Every year 4nos. mock drills carried out in the premise on rotational basis covering all plants.
6	Green Belts	Vegetation, green belt development	More than 50,000 Trees Year	Once a year	Green belt area is about 36% land area. Total area: 1126078.27 sq.mt Green belt area: 409030.00 sq.mt